6 research outputs found

    Optimal Offline and Competitive Online Strategies for Transmitter-Receiver Energy Harvesting

    Full text link
    Transmitter-receiver energy harvesting model is assumed, where both the transmitter and receiver are powered by random energy source. Given a fixed number of bits, the problem is to find the optimal transmission power profile at the transmitter and ON-OFF profile at the receiver to minimize the transmission time. Structure of the optimal offline strategy is derived together with an optimal offline policy. An online policy with competitive ratio of strictly less than two is also derived

    Energy Harvesting Networks with General Utility Functions: Near Optimal Online Policies

    Full text link
    We consider online scheduling policies for single-user energy harvesting communication systems, where the goal is to characterize online policies that maximize the long term average utility, for some general concave and monotonically increasing utility function. In our setting, the transmitter relies on energy harvested from nature to send its messages to the receiver, and is equipped with a finite-sized battery to store its energy. Energy packets are independent and identically distributed (i.i.d.) over time slots, and are revealed causally to the transmitter. Only the average arrival rate is known a priori. We first characterize the optimal solution for the case of Bernoulli arrivals. Then, for general i.i.d. arrivals, we first show that fixed fraction policies [Shaviv-Ozgur] are within a constant multiplicative gap from the optimal solution for all energy arrivals and battery sizes. We then derive a set of sufficient conditions on the utility function to guarantee that fixed fraction policies are within a constant additive gap as well from the optimal solution.Comment: To appear in the 2017 IEEE International Symposium on Information Theory. arXiv admin note: text overlap with arXiv:1705.1030

    On Distributed Power Control for Uncoordinated Dual Energy Harvesting Links: Performance Bounds and Near-Optimal Policies

    Full text link
    In this paper, we consider a point-to-point link between an energy harvesting transmitter and receiver, where neither node has the information about the battery state or energy availability at the other node. We consider a model where data is successfully delivered only in slots where both nodes are active. Energy loss occurs whenever one node turns on while the other node is in sleep mode. In each slot, based on their own energy availability, the transmitter and receiver need to independently decide whether or not to turn on, with the aim of maximizing the long-term time-average throughput. We present an upper bound on the throughput achievable by analyzing a genie-aided system that has noncausal knowledge of the energy arrivals at both the nodes. Next, we propose an online policy requiring an occasional one-bit feedback whose throughput is within one bit of the upper bound, asymptotically in the battery size. In order to further reduce the feedback required, we propose a time-dilated version of the online policy. As the time dilation gets large, this policy does not require any feedback and achieves the upper bound asymptotically in the battery size. Inspired by this, we also propose a near-optimal fully uncoordinated policy. We use Monte Carlo simulations to validate our theoretical results and illustrate the performance of the proposed policies.Comment: 8 page
    corecore