15,209 research outputs found

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Progressive Processing of Continuous Range Queries in Hierarchical Wireless Sensor Networks

    Full text link
    In this paper, we study the problem of processing continuous range queries in a hierarchical wireless sensor network. Contrasted with the traditional approach of building networks in a "flat" structure using sensor devices of the same capability, the hierarchical approach deploys devices of higher capability in a higher tier, i.e., a tier closer to the server. While query processing in flat sensor networks has been widely studied, the study on query processing in hierarchical sensor networks has been inadequate. In wireless sensor networks, the main costs that should be considered are the energy for sending data and the storage for storing queries. There is a trade-off between these two costs. Based on this, we first propose a progressive processing method that effectively processes a large number of continuous range queries in hierarchical sensor networks. The proposed method uses the query merging technique proposed by Xiang et al. as the basis and additionally considers the trade-off between the two costs. More specifically, it works toward reducing the storage cost at lower-tier nodes by merging more queries, and toward reducing the energy cost at higher-tier nodes by merging fewer queries (thereby reducing "false alarms"). We then present how to build a hierarchical sensor network that is optimal with respect to the weighted sum of the two costs. It allows for a cost-based systematic control of the trade-off based on the relative importance between the storage and energy in a given network environment and application. Experimental results show that the proposed method achieves a near-optimal control between the storage and energy and reduces the cost by 0.989~84.995 times compared with the cost achieved using the flat (i.e., non-hierarchical) setup as in the work by Xiang et al.Comment: 41 pages, 20 figure

    Partner selection in indoor-to-outdoor cooperative networks: an experimental study

    Full text link
    In this paper, we develop a partner selection protocol for enhancing the network lifetime in cooperative wireless networks. The case-study is the cooperative relayed transmission from fixed indoor nodes to a common outdoor access point. A stochastic bivariate model for the spatial distribution of the fading parameters that govern the link performance, namely the Rician K-factor and the path-loss, is proposed and validated by means of real channel measurements. The partner selection protocol is based on the real-time estimation of a function of these fading parameters, i.e., the coding gain. To reduce the complexity of the link quality assessment, a Bayesian approach is proposed that uses the site-specific bivariate model as a-priori information for the coding gain estimation. This link quality estimator allows network lifetime gains almost as if all K-factor values were known. Furthermore, it suits IEEE 802.15.4 compliant networks as it efficiently exploits the information acquired from the receiver signal strength indicator. Extensive numerical results highlight the trade-off between complexity, robustness to model mismatches and network lifetime performance. We show for instance that infrequent updates of the site-specific model through K-factor estimation over a subset of links are sufficient to at least double the network lifetime with respect to existing algorithms based on path loss information only.Comment: This work has been submitted to IEEE Journal on Selected Areas in Communications in August 201

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network

    Model Selection Approach for Distributed Fault Detection in Wireless Sensor Networks

    Full text link
    Sensor networks aim at monitoring their surroundings for event detection and object tracking. But, due to failure, or death of sensors, false signal can be transmitted. In this paper, we consider the problems of distributed fault detection in wireless sensor network (WSN). In particular, we consider how to take decision regarding fault detection in a noisy environment as a result of false detection or false response of event by some sensors, where the sensors are placed at the center of regular hexagons and the event can occur at only one hexagon. We propose fault detection schemes that explicitly introduce the error probabilities into the optimal event detection process. We introduce two types of detection probabilities, one for the center node, where the event occurs and the other one for the adjacent nodes. This second type of detection probability is new in sensor network literature. We develop schemes under the model selection procedure, multiple model selection procedure and use the concept of Bayesian model averaging to identify a set of likely fault sensors and obtain an average predictive error.Comment: 14 page
    • …
    corecore