60 research outputs found

    Optimal Parameter Choices Through Self-Adjustment: Applying the 1/5-th Rule in Discrete Settings

    Full text link
    While evolutionary algorithms are known to be very successful for a broad range of applications, the algorithm designer is often left with many algorithmic choices, for example, the size of the population, the mutation rates, and the crossover rates of the algorithm. These parameters are known to have a crucial influence on the optimization time, and thus need to be chosen carefully, a task that often requires substantial efforts. Moreover, the optimal parameters can change during the optimization process. It is therefore of great interest to design mechanisms that dynamically choose best-possible parameters. An example for such an update mechanism is the one-fifth success rule for step-size adaption in evolutionary strategies. While in continuous domains this principle is well understood also from a mathematical point of view, no comparable theory is available for problems in discrete domains. In this work we show that the one-fifth success rule can be effective also in discrete settings. We regard the (1+(λ,λ))(1+(\lambda,\lambda))~GA proposed in [Doerr/Doerr/Ebel: From black-box complexity to designing new genetic algorithms, TCS 2015]. We prove that if its population size is chosen according to the one-fifth success rule then the expected optimization time on \textsc{OneMax} is linear. This is better than what \emph{any} static population size λ\lambda can achieve and is asymptotically optimal also among all adaptive parameter choices.Comment: This is the full version of a paper that is to appear at GECCO 201

    Runtime Analysis of the (1+(λ,λ))(1+(\lambda,\lambda)) Genetic Algorithm on Random Satisfiable 3-CNF Formulas

    Full text link
    The (1+(λ,λ))(1+(\lambda,\lambda)) genetic algorithm, first proposed at GECCO 2013, showed a surprisingly good performance on so me optimization problems. The theoretical analysis so far was restricted to the OneMax test function, where this GA profited from the perfect fitness-distance correlation. In this work, we conduct a rigorous runtime analysis of this GA on random 3-SAT instances in the planted solution model having at least logarithmic average degree, which are known to have a weaker fitness distance correlation. We prove that this GA with fixed not too large population size again obtains runtimes better than Θ(nlogn)\Theta(n \log n), which is a lower bound for most evolutionary algorithms on pseudo-Boolean problems with unique optimum. However, the self-adjusting version of the GA risks reaching population sizes at which the intermediate selection of the GA, due to the weaker fitness-distance correlation, is not able to distinguish a profitable offspring from others. We show that this problem can be overcome by equipping the self-adjusting GA with an upper limit for the population size. Apart from sparse instances, this limit can be chosen in a way that the asymptotic performance does not worsen compared to the idealistic OneMax case. Overall, this work shows that the (1+(λ,λ))(1+(\lambda,\lambda)) GA can provably have a good performance on combinatorial search and optimization problems also in the presence of a weaker fitness-distance correlation.Comment: An extended abstract of this report will appear in the proceedings of the 2017 Genetic and Evolutionary Computation Conference (GECCO 2017

    Runtime Analysis for Self-adaptive Mutation Rates

    Full text link
    We propose and analyze a self-adaptive version of the (1,λ)(1,\lambda) evolutionary algorithm in which the current mutation rate is part of the individual and thus also subject to mutation. A rigorous runtime analysis on the OneMax benchmark function reveals that a simple local mutation scheme for the rate leads to an expected optimization time (number of fitness evaluations) of O(nλ/logλ+nlogn)O(n\lambda/\log\lambda+n\log n) when λ\lambda is at least ClnnC \ln n for some constant C>0C > 0. For all values of λClnn\lambda \ge C \ln n, this performance is asymptotically best possible among all λ\lambda-parallel mutation-based unbiased black-box algorithms. Our result shows that self-adaptation in evolutionary computation can find complex optimal parameter settings on the fly. At the same time, it proves that a relatively complicated self-adjusting scheme for the mutation rate proposed by Doerr, Gie{\ss}en, Witt, and Yang~(GECCO~2017) can be replaced by our simple endogenous scheme. On the technical side, the paper contributes new tools for the analysis of two-dimensional drift processes arising in the analysis of dynamic parameter choices in EAs, including bounds on occupation probabilities in processes with non-constant drift

    Sharp Bounds on the Runtime of the (1+1) EA via Drift Analysis and Analytic Combinatorial Tools

    Full text link
    The expected running time of the classical (1+1) EA on the OneMax benchmark function has recently been determined by Hwang et al. (2018) up to additive errors of O((logn)/n)O((\log n)/n). The same approach proposed there also leads to a full asymptotic expansion with errors of the form O(nKlogn)O(n^{-K}\log n) for any K>0K>0. This precise result is obtained by matched asymptotics with rigorous error analysis (or by solving asymptotically the underlying recurrences via inductive approximation arguments), ideas radically different from well-established techniques for the running time analysis of evolutionary computation such as drift analysis. This paper revisits drift analysis for the (1+1) EA on OneMax and obtains that the expected running time E(T)E(T), starting from n/2\lceil n/2\rceil one-bits, is determined by the sum of inverse drifts up to logarithmic error terms, more precisely k=1n/21Δ(k)c1lognE(T)k=1n/21Δ(k)c2logn,\sum_{k=1}^{\lfloor n/2\rfloor}\frac{1}{\Delta(k)} - c_1\log n \le E(T) \le \sum_{k=1}^{\lfloor n/2\rfloor}\frac{1}{\Delta(k)} - c_2\log n, where Δ(k)\Delta(k) is the drift (expected increase of the number of one-bits from the state of nkn-k ones) and c1,c2>0c_1,c_2 >0 are explicitly computed constants. This improves the previous asymptotic error known for the sum of inverse drifts from O~(n2/3)\tilde{O}(n^{2/3}) to a logarithmic error and gives for the first time a non-asymptotic error bound. Using standard asymptotic techniques, the difference between E(T)E(T) and the sum of inverse drifts is found to be (e/2)logn+O(1)(e/2)\log n+O(1).Comment: 33 pages; preprint of a paper that will be published in the proceedings of FOGA 2019; v2: minor correction

    Complexity Theory for Discrete Black-Box Optimization Heuristics

    Full text link
    A predominant topic in the theory of evolutionary algorithms and, more generally, theory of randomized black-box optimization techniques is running time analysis. Running time analysis aims at understanding the performance of a given heuristic on a given problem by bounding the number of function evaluations that are needed by the heuristic to identify a solution of a desired quality. As in general algorithms theory, this running time perspective is most useful when it is complemented by a meaningful complexity theory that studies the limits of algorithmic solutions. In the context of discrete black-box optimization, several black-box complexity models have been developed to analyze the best possible performance that a black-box optimization algorithm can achieve on a given problem. The models differ in the classes of algorithms to which these lower bounds apply. This way, black-box complexity contributes to a better understanding of how certain algorithmic choices (such as the amount of memory used by a heuristic, its selective pressure, or properties of the strategies that it uses to create new solution candidates) influences performance. In this chapter we review the different black-box complexity models that have been proposed in the literature, survey the bounds that have been obtained for these models, and discuss how the interplay of running time analysis and black-box complexity can inspire new algorithmic solutions to well-researched problems in evolutionary computation. We also discuss in this chapter several interesting open questions for future work.Comment: This survey article is to appear (in a slightly modified form) in the book "Theory of Randomized Search Heuristics in Discrete Search Spaces", which will be published by Springer in 2018. The book is edited by Benjamin Doerr and Frank Neumann. Missing numbers of pointers to other chapters of this book will be added as soon as possibl

    Self-Adjusting Evolutionary Algorithms for Multimodal Optimization

    Full text link
    Recent theoretical research has shown that self-adjusting and self-adaptive mechanisms can provably outperform static settings in evolutionary algorithms for binary search spaces. However, the vast majority of these studies focuses on unimodal functions which do not require the algorithm to flip several bits simultaneously to make progress. In fact, existing self-adjusting algorithms are not designed to detect local optima and do not have any obvious benefit to cross large Hamming gaps. We suggest a mechanism called stagnation detection that can be added as a module to existing evolutionary algorithms (both with and without prior self-adjusting algorithms). Added to a simple (1+1) EA, we prove an expected runtime on the well-known Jump benchmark that corresponds to an asymptotically optimal parameter setting and outperforms other mechanisms for multimodal optimization like heavy-tailed mutation. We also investigate the module in the context of a self-adjusting (1+λ\lambda) EA and show that it combines the previous benefits of this algorithm on unimodal problems with more efficient multimodal optimization. To explore the limitations of the approach, we additionally present an example where both self-adjusting mechanisms, including stagnation detection, do not help to find a beneficial setting of the mutation rate. Finally, we investigate our module for stagnation detection experimentally.Comment: 26 pages. Full version of a paper appearing at GECCO 202
    corecore