2 research outputs found

    Optimal Multi-Server Allocation to Parallel Queues With Independent Random Queue-Server Connectivity

    Full text link
    We investigate an optimal scheduling problem in a discrete-time system of L parallel queues that are served by K identical, randomly connected servers. Each queue may be connected to a subset of the K servers during any given time slot. This model has been widely used in studies of emerging 3G/4G wireless systems. We introduce the class of Most Balancing (MB) policies and provide their mathematical characterization. We prove that MB policies are optimal; we define optimality as minimization, in stochastic ordering sense, of a range of cost functions of the queue lengths, including the process of total number of packets in the system. We use stochastic coupling arguments for our proof. We introduce the Least Connected Server First/Longest Connected Queue (LCSF/LCQ) policy as an easy-to-implement approximation of MB policies. We conduct a simulation study to compare the performance of several policies. The simulation results show that: (a) in all cases, LCSF/LCQ approximations to the MB policies outperform the other policies, (b) randomized policies perform fairly close to the optimal one, and, (c) the performance advantage of the optimal policy over the other simulated policies increases as the channel connectivity probability decreases and as the number of servers in the system increases.Comment: 53 single-column pages, 8 figure

    Explicit Characterization of Stability Region for Stationary Multi-Queue Multi-Server Systems

    Full text link
    In this paper, we characterize the network stability region (capacity region) of multi-queue multi-server (MQMS) queueing systems with stationary channel distribution and stationary arrival processes. The stability region is specified by a finite set of linear inequalities. We first show that the stability region is a polytope characterized by the finite set of its facet defining hyperplanes. We explicitly determine the coefficients of the linear inequalities describing the facet defining hyperplanes of the stability region polytope. We further derive the necessary and sufficient conditions for the stability of the system for general arrival processes with finite first and second moments. For the case of stationary arrival processes, the derived conditions characterize the system stability region. Furthermore, we obtain an upper bound for the average queueing delay of Maximum Weight (MW) server allocation policy which has been shown in the literature to be a throughput optimal policy for MQMS systems. Using a similar approach, we can characterize the stability region for a fluid model MQMS system. However, the stability region of the fluid model system is described by an infinite number of linear inequalities since in this case the stability region is a convex surface. We present an example where we show that in some cases depending on the channel distribution, the stability region can be characterized by a finite set of non-linear inequalities instead of an infinite number of linear inequalities.Comment: 35 pages, 16 figure
    corecore