7 research outputs found

    Enhanced distance-based location management of mobile communication systems using a cell coordinates approach

    Get PDF
    In managing the locations of mobile users in mobile communication systems, the distance-based strategy has been proven to have better performance than other dynamic strategies, but is difficult to implement. In this paper, a simple approach is introduced to implement the distance-based strategy by using the cell coordinates in calculating the physical distance traveled. This approach has the advantages of being independent of the size, shape, and distribution of cells, as well as catering for the direction of movement in addition to the speed of each mobile terminal. An enhanced distance-based location management strategy is proposed to dynamically adjust the size and shape of location area for each individual mobile terminal according to the current speed and direction of movement. It can reduce the location management signaling traffic of the distance-based strategy by half when mobile terminals have predictable directions of movement. Three types of location updating schemes are discussed, namely, Circular Location Area, Optimal Location Area, and Elliptic Location Area. Paging schemes using searching techniques such as expanding distance search based on the last reported location and based on the predicted location, and expanding direction search are also explored to further reduce paging signal traffic by partitioning location areas into paging areas.published_or_final_versio

    Optimal location area design to minimize registration signaling traffic in wireless systems

    No full text

    Network configuration improvement and design aid using artificial intelligence

    Get PDF
    This dissertation investigates the development of new Global system for mobile communications (GSM) improvement algorithms used to solve the nondeterministic polynomial-time hard (NP-hard) problem of assigning cells to switches. The departure of this project from previous projects is in the area of the GSM network being optimised. Most previous projects tried minimising the signalling load on the network. The main aim in this project is to reduce the operational expenditure as much as possible while still adhering to network element constraints. This is achieved by generating new network configurations with a reduced transmission cost. Since assigning cells to switches in cellular mobile networks is a NP-hard problem, exact methods cannot be used to solve it for real-size networks. In this context, heuristic approaches, evolutionary search algorithms and clustering techniques can, however, be used. This dissertation presents a comprehensive and comparative study of the above-mentioned categories of search techniques adopted specifically for GSM network improvement. The evolutionary search technique evaluated is a genetic algorithm (GA) while the unsupervised learning technique is a Gaussian mixture model (GMM). A number of custom-developed heuristic search techniques with differing goals were also experimented with. The implementation of these algorithms was tested in order to measure the quality of the solutions. Results obtained confirmed the ability of the search techniques to produce network configurations with a reduced operational expenditure while still adhering to network element constraints. The best results found were using the Gaussian mixture model where savings of up to 17% were achieved. The heuristic searches produced promising results in the form of the characteristics they portray, for example, load-balancing. Due to the massive problem space and a suboptimal chromosome representation, the genetic algorithm struggled to find high quality viable solutions. The objective of reducing network cost was achieved by performing cell-to-switch optimisation taking traffic distributions, transmission costs and network element constraints into account. These criteria cannot be divorced from each other since they are all interdependent, omitting any one of them will lead to inefficient and infeasible configurations. Results obtained further indicated that the search space consists out of two components namely, traffic and transmission cost. When optimising, it is very important to consider both components simultaneously, if not, infeasible or suboptimum solutions are generated. It was also found that pre-processing has a major impact on the cluster-forming ability of the GMM. Depending on how the pre-processing technique is set up, it is possible to bias the cluster-formation process in such a way that either transmission cost savings or a reduction in inter base station controller/switching centre traffic volume is given preference. Two of the difficult questions to answer when performing network capacity expansions are where to install the remote base station controllers (BSCs) and how to alter the existing BSC boundaries to accommodate the new BSCs being introduced. Using the techniques developed in this dissertation, these questions can now be answered with confidence.Dissertation (MEng)--University of Pretoria, 2008.Electrical, Electronic and Computer Engineeringunrestricte

    Planning and Optimization of Tracking Areas for Long TermEvolution Networks

    Full text link
    corecore