69 research outputs found

    Optimal Locally Repairable Codes and Connections to Matroid Theory

    Full text link
    Petabyte-scale distributed storage systems are currently transitioning to erasure codes to achieve higher storage efficiency. Classical codes like Reed-Solomon are highly sub-optimal for distributed environments due to their high overhead in single-failure events. Locally Repairable Codes (LRCs) form a new family of codes that are repair efficient. In particular, LRCs minimize the number of nodes participating in single node repairs during which they generate small network traffic. Two large-scale distributed storage systems have already implemented different types of LRCs: Windows Azure Storage and the Hadoop Distributed File System RAID used by Facebook. The fundamental bounds for LRCs, namely the best possible distance for a given code locality, were recently discovered, but few explicit constructions exist. In this work, we present an explicit and optimal LRCs that are simple to construct. Our construction is based on grouping Reed-Solomon (RS) coded symbols to obtain RS coded symbols over a larger finite field. We then partition these RS symbols in small groups, and re-encode them using a simple local code that offers low repair locality. For the analysis of the optimality of the code, we derive a new result on the matroid represented by the code generator matrix.Comment: Submitted for publication, a shorter version was presented at ISIT 201

    Constructions of Optimal and Almost Optimal Locally Repairable Codes

    Full text link
    Constructions of optimal locally repairable codes (LRCs) in the case of (r+1)∤n(r+1) \nmid n and over small finite fields were stated as open problems for LRCs in [I. Tamo \emph{et al.}, "Optimal locally repairable codes and connections to matroid theory", \emph{2013 IEEE ISIT}]. In this paper, these problems are studied by constructing almost optimal linear LRCs, which are proven to be optimal for certain parameters, including cases for which (r+1)∤n(r+1) \nmid n. More precisely, linear codes for given length, dimension, and all-symbol locality are constructed with almost optimal minimum distance. `Almost optimal' refers to the fact that their minimum distance differs by at most one from the optimal value given by a known bound for LRCs. In addition to these linear LRCs, optimal LRCs which do not require a large field are constructed for certain classes of parameters.Comment: 5 pages, conferenc

    Optimal locally repairable codes of distance 33 and 44 via cyclic codes

    Get PDF
    Like classical block codes, a locally repairable code also obeys the Singleton-type bound (we call a locally repairable code {\it optimal} if it achieves the Singleton-type bound). In the breakthrough work of \cite{TB14}, several classes of optimal locally repairable codes were constructed via subcodes of Reed-Solomon codes. Thus, the lengths of the codes given in \cite{TB14} are upper bounded by the code alphabet size qq. Recently, it was proved through extension of construction in \cite{TB14} that length of qq-ary optimal locally repairable codes can be q+1q+1 in \cite{JMX17}. Surprisingly, \cite{BHHMV16} presented a few examples of qq-ary optimal locally repairable codes of small distance and locality with code length achieving roughly q2q^2. Very recently, it was further shown in \cite{LMX17} that there exist qq-ary optimal locally repairable codes with length bigger than q+1q+1 and distance propositional to nn. Thus, it becomes an interesting and challenging problem to construct new families of qq-ary optimal locally repairable codes of length bigger than q+1q+1. In this paper, we construct a class of optimal locally repairable codes of distance 33 and 44 with unbounded length (i.e., length of the codes is independent of the code alphabet size). Our technique is through cyclic codes with particular generator and parity-check polynomials that are carefully chosen

    Capacity of Locally Recoverable Codes

    Full text link
    Motivated by applications in distributed storage, the notion of a locally recoverable code (LRC) was introduced a few years back. In an LRC, any coordinate of a codeword is recoverable by accessing only a small number of other coordinates. While different properties of LRCs have been well-studied, their performance on channels with random erasures or errors has been mostly unexplored. In this note, we analyze the performance of LRCs over such stochastic channels. In particular, for input-symmetric discrete memoryless channels, we give a tight characterization of the gap to Shannon capacity when LRCs are used over the channel.Comment: Invited paper to the Information Theory Workshop (ITW) 201

    Coding with Constraints: Minimum Distance Bounds and Systematic Constructions

    Get PDF
    We examine an error-correcting coding framework in which each coded symbol is constrained to be a function of a fixed subset of the message symbols. With an eye toward distributed storage applications, we seek to design systematic codes with good minimum distance that can be decoded efficiently. On this note, we provide theoretical bounds on the minimum distance of such a code based on the coded symbol constraints. We refine these bounds in the case where we demand a systematic linear code. Finally, we provide conditions under which each of these bounds can be achieved by choosing our code to be a subcode of a Reed-Solomon code, allowing for efficient decoding. This problem has been considered in multisource multicast network error correction. The problem setup is also reminiscent of locally repairable codes.Comment: Submitted to ISIT 201

    List Decoding of Locally Repairable Codes

    Full text link
    We show that locally repairable codes (LRCs) can be list decoded efficiently beyond the Johnson radius for a large range of parameters by utilizing the local error correction capabilities. The new decoding radius is derived and the asymptotic behavior is analyzed. We give a general list decoding algorithm for LRCs that achieves this radius along with an explicit realization for a class of LRCs based on Reed-Solomon codes (Tamo-Barg LRCs). Further, a probabilistic algorithm for unique decoding of low complexity is given and its success probability analyzed

    Optimal Linear and Cyclic Locally Repairable Codes over Small Fields

    Full text link
    We consider locally repairable codes over small fields and propose constructions of optimal cyclic and linear codes in terms of the dimension for a given distance and length. Four new constructions of optimal linear codes over small fields with locality properties are developed. The first two approaches give binary cyclic codes with locality two. While the first construction has availability one, the second binary code is characterized by multiple available repair sets based on a binary Simplex code. The third approach extends the first one to q-ary cyclic codes including (binary) extension fields, where the locality property is determined by the properties of a shortened first-order Reed-Muller code. Non-cyclic optimal binary linear codes with locality greater than two are obtained by the fourth construction.Comment: IEEE Information Theory Workshop (ITW) 2015, Apr 2015, Jerusalem, Israe
    • …
    corecore