138 research outputs found

    Low-latency Networking: Where Latency Lurks and How to Tame It

    Full text link
    While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or sub-milliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research

    Full-Duplex Wireless for 6G: Progress Brings New Opportunities and Challenges

    Full text link
    The use of in-band full-duplex (FD) enables nodes to simultaneously transmit and receive on the same frequency band, which challenges the traditional assumption in wireless network design. The full-duplex capability enhances spectral efficiency and decreases latency, which are two key drivers pushing the performance expectations of next-generation mobile networks. In less than ten years, in-band FD has advanced from being demonstrated in research labs to being implemented in standards and products, presenting new opportunities to utilize its foundational concepts. Some of the most significant opportunities include using FD to enable wireless networks to sense the physical environment, integrate sensing and communication applications, develop integrated access and backhaul solutions, and work with smart signal propagation environments powered by reconfigurable intelligent surfaces. However, these new opportunities also come with new challenges for large-scale commercial deployment of FD technology, such as managing self-interference, combating cross-link interference in multi-cell networks, and coexistence of dynamic time division duplex, subband FD and FD networks.Comment: 21 pages, 15 figures, accepted to an IEEE Journa

    Coexistence of UAVs and Terrestrial Users in Millimeter-Wave Urban Networks

    Full text link
    5G millimeter-wave (mmWave) cellular networks are in the early phase of commercial deployments and present a unique opportunity for robust, high-data-rate communication to unmanned aerial vehicles (UAVs). A fundamental question is whether and how mmWave networks designed for terrestrial users should be modified to serve UAVs. The paper invokes realistic cell layouts, antenna patterns, and channel models trained from extensive ray tracing data to assess the performance of various network alternatives. Importantly, the study considers the addition of dedicated uptilted rooftop-mounted cells for aerial coverage, as well as novel spectrum sharing modes between terrestrial and aerial network operators. The effect of power control and of multiuser multiple-input multiple-output are also studied

    Topology Management for Wireless Mesh Self-Organizing Mobile Backhauls

    Get PDF
    The mobile data consumption is increasing exponentially, creating demand for more capacity from the network. Cell densification with small cells, also known as Heterogeneous networks, is seen as a solution for the capacity problem. On the downside, this creates a problem for providing a cost-effective backhaul connection to these small cells. The Self-optimizing Wireless Mesh Network (SWMN) backhaul has been proposed as a backhaul solution for small cells. In SWMN, the nodes form a partial mesh topology, where routing and data transmission is based on pre-computed prioritized set of routes and link-schedules. Hence, an entity that handles topology management functionalities is required, which enables automatic network configuration, network monitoring, optimization and management. The main aim of this thesis is to verify the topology management functionalities. The work involved development of a simulator for creating test topology scenarios. Additionally, the task involved verifying the feasibility of functionalities in the proof-of-concept system
    corecore