682 research outputs found

    Graph-Theoretic Approaches to Two-Sender Index Coding

    Full text link
    Consider a communication scenario over a noiseless channel where a sender is required to broadcast messages to multiple receivers, each having side information about some messages. In this scenario, the sender can leverage the receivers' side information during the encoding of messages in order to reduce the required transmissions. This type of encoding is called index coding. In this paper, we study index coding with two cooperative senders, each with some subset of messages, and multiple receivers, each requesting one unique message. The index coding in this setup is called two-sender unicast index coding (TSUIC). The main aim of TSUIC is to minimize the total number of transmissions required by the two senders. Based on graph-theoretic approaches, we prove that TSUIC is equivalent to single-sender unicast index coding (SSUIC) for some special cases. Moreover, we extend the existing schemes for SSUIC, viz., the cycle-cover scheme, the clique-cover scheme, and the local-chromatic scheme to the corresponding schemes for TSUIC.Comment: To be presented at 2016 IEEE Global Communications Conference (GLOBECOM 2016) Workshop on Network Coding and Applications (NetCod), Washington, USA, 201

    Index Coding: Rank-Invariant Extensions

    Full text link
    An index coding (IC) problem consisting of a server and multiple receivers with different side-information and demand sets can be equivalently represented using a fitting matrix. A scalar linear index code to a given IC problem is a matrix representing the transmitted linear combinations of the message symbols. The length of an index code is then the number of transmissions (or equivalently, the number of rows in the index code). An IC problem Iext{\cal I}_{ext} is called an extension of another IC problem I{\cal I} if the fitting matrix of I{\cal I} is a submatrix of the fitting matrix of Iext{\cal I}_{ext}. We first present a straightforward mm\textit{-order} extension Iext{\cal I}_{ext} of an IC problem I{\cal I} for which an index code is obtained by concatenating mm copies of an index code of I{\cal I}. The length of the codes is the same for both I{\cal I} and Iext{\cal I}_{ext}, and if the index code for I{\cal I} has optimal length then so does the extended code for Iext{\cal I}_{ext}. More generally, an extended IC problem of I{\cal I} having the same optimal length as I{\cal I} is said to be a \textit{rank-invariant} extension of I{\cal I}. We then focus on 22-order rank-invariant extensions of I{\cal I}, and present constructions of such extensions based on involutory permutation matrices

    On Approximating the Sum-Rate for Multiple-Unicasts

    Full text link
    We study upper bounds on the sum-rate of multiple-unicasts. We approximate the Generalized Network Sharing Bound (GNS cut) of the multiple-unicasts network coding problem with kk independent sources. Our approximation algorithm runs in polynomial time and yields an upper bound on the joint source entropy rate, which is within an O(log⁑2k)O(\log^2 k) factor from the GNS cut. It further yields a vector-linear network code that achieves joint source entropy rate within an O(log⁑2k)O(\log^2 k) factor from the GNS cut, but \emph{not} with independent sources: the code induces a correlation pattern among the sources. Our second contribution is establishing a separation result for vector-linear network codes: for any given field F\mathbb{F} there exist networks for which the optimum sum-rate supported by vector-linear codes over F\mathbb{F} for independent sources can be multiplicatively separated by a factor of k1βˆ’Ξ΄k^{1-\delta}, for any constant Ξ΄>0{\delta>0}, from the optimum joint entropy rate supported by a code that allows correlation between sources. Finally, we establish a similar separation result for the asymmetric optimum vector-linear sum-rates achieved over two distinct fields Fp\mathbb{F}_{p} and Fq\mathbb{F}_{q} for independent sources, revealing that the choice of field can heavily impact the performance of a linear network code.Comment: 10 pages; Shorter version appeared at ISIT (International Symposium on Information Theory) 2015; some typos correcte

    Joint Coding and Scheduling Optimization in Wireless Systems with Varying Delay Sensitivities

    Full text link
    Throughput and per-packet delay can present strong trade-offs that are important in the cases of delay sensitive applications.We investigate such trade-offs using a random linear network coding scheme for one or more receivers in single hop wireless packet erasure broadcast channels. We capture the delay sensitivities across different types of network applications using a class of delay metrics based on the norms of packet arrival times. With these delay metrics, we establish a unified framework to characterize the rate and delay requirements of applications and optimize system parameters. In the single receiver case, we demonstrate the trade-off between average packet delay, which we view as the inverse of throughput, and maximum ordered inter-arrival delay for various system parameters. For a single broadcast channel with multiple receivers having different delay constraints and feedback delays, we jointly optimize the coding parameters and time-division scheduling parameters at the transmitters. We formulate the optimization problem as a Generalized Geometric Program (GGP). This approach allows the transmitters to adjust adaptively the coding and scheduling parameters for efficient allocation of network resources under varying delay constraints. In the case where the receivers are served by multiple non-interfering wireless broadcast channels, the same optimization problem is formulated as a Signomial Program, which is NP-hard in general. We provide approximation methods using successive formulation of geometric programs and show the convergence of approximations.Comment: 9 pages, 10 figure
    • …
    corecore