6 research outputs found

    Boolean Models of Genomic Regulatory Networks: Reduction Mappings, Inference, and External Control

    Get PDF
    Computational modeling of genomic regulation has become an important focus of systems biology and genomic signal processing for the past several years. It holds the promise to uncover both the structure and dynamical properties of the complex gene, protein or metabolic networks responsible for the cell functioning in various contexts and regimes. This, in turn, will lead to the development of optimal intervention strategies for prevention and control of disease. At the same time, constructing such computational models faces several challenges. High complexity is one of the major impediments for the practical applications of the models. Thus, reducing the size/complexity of a model becomes a critical issue in problems such as model selection, construction of tractable subnetwork models, and control of its dynamical behavior. We focus on the reduction problem in the context of two specific models of genomic regulation: Boolean networks with perturbation (BNP) and probabilistic Boolean networks (PBN). We also compare and draw a parallel between the reduction problem and two other important problems of computational modeling of genomic networks: the problem of network inference and the problem of designing external control policies for intervention/altering the dynamics of the model

    Application of Max-SAT-based ATPG to optimal cancer therapy design

    Get PDF
    BACKGROUND: Cancer and other gene related diseases are usually caused by a failure in the signaling pathway between genes and cells. These failures can occur in different areas of the gene regulatory network, but can be abstracted as faults in the regulatory function. For effective cancer treatment, it is imperative to identify faults and select appropriate drugs to treat the faults. In this paper, we present an extensible Max-SAT based automatic test pattern generation (ATPG) algorithm for cancer therapy. This ATPG algorithm is based on Boolean Satisfiability (SAT) and utilizes the stuck-at fault model for representing signaling faults. A weighted partial Max-SAT formulation is used to enable efficient selection of the most effective drug. RESULTS: Several usage cases are presented for fault identification and drug selection. These cases include the identification of testable faults, optimal drug selection for single/multiple known faults, and optimal drug selection for overall fault coverage. Experimental results on growth factor (GF) signaling pathways demonstrate that our algorithm is flexible, and can yield an exact solution for each feature in much less than 1 second

    Systems Medicine: An Integrated Approach with Decision Making Perspective

    Get PDF
    Two models are proposed to describe interactions among genes, transcription factors, and signaling cascades involved in regulating a cellular sub-system. These models fall within the class of Markovian regulatory networks, and can accommodate for different biological time scales. These regulatory networks are used to study pathological cellular dynamics and discover treatments that beneficially alter those dynamics. The salient translational goal is to design effective therapeutic actions that desirably modify a pathological cellular behavior via external treatments that vary the expressions of targeted genes. The objective of therapeutic actions is to reduce the likelihood of the pathological phenotypes related to a disease. The task of finding effective treatments is formulated as sequential decision making processes that discriminate the gene-expression profiles with high pathological competence versus those with low pathological competence. Thereby, the proposed computational frameworks provide tools that facilitate the discovery of effective drug targets and the design of potent therapeutic actions on them. Each of the proposed system-based therapeutic methods in this dissertation is motivated by practical and analytical considerations. First, it is determined how asynchronous regulatory models can be used as a tool to search for effective therapeutic interventions. Then, a constrained intervention method is introduced to incorporate the side-effects of treatments while searching for a sequence of potent therapeutic actions. Lastly, to bypass the impediment of model inference and to mitigate the numerical challenges of exhaustive search algorithms, a heuristic method is proposed for designing system-based therapies. The presentation of the key ideas in method is facilitated with the help of several case studies

    Application of Logic Synthesis Toward the Inference and Control of Gene Regulatory Networks

    Get PDF
    In the quest to understand cell behavior and cure genetic diseases such as cancer, the fundamental approach being taken is undergoing a gradual change. It is becoming more acceptable to view these diseases as an engineering problem, and systems engineering approaches are being deployed to tackle genetic diseases. In this light, we believe that logic synthesis techniques can play a very important role. Several techniques from the field of logic synthesis can be adapted to assist in the arguably huge effort of modeling cell behavior, inferring biological networks, and controlling genetic diseases. Genes interact with other genes in a Gene Regulatory Network (GRN) and can be modeled as a Boolean Network (BN) or equivalently as a Finite State Machine (FSM). As the expression of genes deter- mine cell behavior, important problems include (i) inferring the GRN from observed gene expression data from biological measurements, and (ii) using the inferred GRN to explain how genetic diseases occur and determine the ”best” therapy towards treatment of disease. We report results on the application of logic synthesis techniques that we have developed to address both these problems. In the first technique, we present Boolean Satisfiability (SAT) based approaches to infer the predictor (logical support) of each gene that regulates melanoma, using gene expression data from patients who are suffering from the disease. From the output of such a tool, biologists can construct targeted experiments to understand the logic functions that regulate a particular target gene. Our second technique builds upon the first, in which we use a logic synthesis technique; implemented using SAT, to determine gene regulating functions for predictors and gene expression data. This technique determines a BN (or family of BNs) to describe the GRN and is validated on a synthetic network and the p53 network. The first two techniques assume binary valued gene expression data. In the third technique, we utilize continuous (analog) expression data, and present an algorithm to infer and rank predictors using modified Zhegalkin polynomials. We demonstrate our method to rank predictors for genes in the mutated mammalian and melanoma networks. The final technique assumes that the GRN is known, and uses weighted partial Max-SAT (WPMS) towards cancer therapy. In this technique, the GRN is assumed to be known. Cancer is modeled using a stuck-at fault model, and ATPG techniques are used to characterize genes leading to cancer and select drugs to treat cancer. To steer the GRN state towards a desirable healthy state, the optimal selection of drugs is formulated using WPMS. Our techniques can be used to find a set of drugs with the least side-effects, and is demonstrated in the context of growth factor pathways for colon cancer

    An Engineering Approach Towards Personalized Cancer Therapy

    Get PDF
    Cells behave as complex systems with regulatory processes that make use of many elements such as switches based on thresholds, memory, feedback, error-checking, and other components commonly encountered in electrical engineering. It is therefore not surprising that these complex systems are amenable to study by engineering methods. A great deal of effort has been spent on observing how cells store, modify, and use information. Still, an understanding of how one uses this knowledge to exert control over cells within a living organism is unavailable. Our prime objective is "Personalized Cancer Therapy" which is based on characterizing the treatment for every individual cancer patient. Knowing how one can systematically alter the behavior of an abnormal cancerous cell will lead towards personalized cancer therapy. Towards this objective, it is required to construct a model for the regulation of the cell and utilize this model to devise effective treatment strategies. The proposed treatments will have to be validated experimentally, but selecting good treatment candidates is a monumental task by itself. It is also a process where an analytic approach to systems biology can provide significant breakthrough. In this dissertation, theoretical frameworks towards effective treatment strategies in the context of probabilistic Boolean networks, a class of gene regulatory networks, are addressed. These proposed analytical tools provide insight into the design of effective therapeutic interventions
    corecore