3 research outputs found

    Optimal measurement budget allocation for particle filtering

    Full text link
    Particle filtering is a powerful tool for target tracking. When the budget for observations is restricted, it is necessary to reduce the measurements to a limited amount of samples carefully selected. A discrete stochastic nonlinear dynamical system is studied over a finite time horizon. The problem of selecting the optimal measurement times for particle filtering is formalized as a combinatorial optimization problem. We propose an approximated solution based on the nesting of a genetic algorithm, a Monte Carlo algorithm and a particle filter. Firstly, an example demonstrates that the genetic algorithm outperforms a random trial optimization. Then, the interest of non-regular measurements versus measurements performed at regular time intervals is illustrated and the efficiency of our proposed solution is quantified: better filtering performances are obtained in 87.5% of the cases and on average, the relative improvement is 27.7%.Comment: 5 pages, 4 figues, conference pape

    Optimal intermittent measurements for tumor tracking in X-ray guided radiotherapy.

    No full text
    In radiation therapy, tumor tracking is a challenging task that allows a better dose delivery. One practice is to acquire X-ray images in real-time during treatment, that are used to estimate the tumor location. These informations are used to predict the close future tumor trajectory. Kalman prediction is a classical approach for this task. The main drawback of X-ray acquisition is that it irradiates the patient, including its healthy tissues. In the classical Kalman framework, X-ray measurements are taken regularly, i.e. at a constant rate. In this paper, we propose a new approach which relaxes this constraint in order to take measurements when they are the most useful. Our aim is for a given budget of measurements to optimize the tracking process. This idea naturally brings to an optimal intermittent Kalman predictor for which measurement times are selected to minimize the mean squared prediction error over the complete fraction. This optimization problem can be solved directly when the respiratory model has been identi_ed and the optimal sampling times can be computed at once. These optimal measurement times are obtained by solving a combinatorial optimization problem using a genetic algorithm. We created a test benchmark on trajectories validated on one patient. This new prediction method is compared to the regular Kalman predictor and a relative improvement of 9:8% is observed on the root mean square position estimation error
    corecore