4 research outputs found

    A study of aggregated 2D Gabor features on appearance-based face recognition

    Get PDF
    Author name used in this publication: Wai-Kin KongAuthor name used in this publication: David ZhangRefereed conference paper2004-2005 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Face recognition in low resolution video sequences using super resolution

    Get PDF
    Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this thesis, we address this issue by using super-resolution techniques as a middle step, where multiple low resolution face image frames are used to obtain a high-resolution face image for improved recognition rates. Two different techniques based on frequency and spatial domains were utilized in super resolution image enhancement. In this thesis, we apply super resolution to both images and video utilizing these techniques and we employ principal component analysis for face matching, which is both computationally efficient and accurate. The result is a system hat can accurately recognize faces using multiple low resolution images/frames

    Recognizing Faces -- An Approach Based on Gabor Wavelets

    Get PDF
    As a hot research topic over the last 25 years, face recognition still seems to be a difficult and largely problem. Distortions caused by variations in illumination, expression and pose are the main challenges to be dealt with by researchers in this field. Efficient recognition algorithms, robust against such distortions, are the main motivations of this research. Based on a detailed review on the background and wide applications of Gabor wavelet, this powerful and biologically driven mathematical tool is adopted to extract features for face recognition. The features contain important local frequency information and have been proven to be robust against commonly encountered distortions. To reduce the computation and memory cost caused by the large feature dimension, a novel boosting based algorithm is proposed and successfully applied to eliminate redundant features. The selected features are further enhanced by kernel subspace methods to handle the nonlinear face variations. The efficiency and robustness of the proposed algorithm is extensively tested using the ORL, FERET and BANCA databases. To normalize the scale and orientation of face images, a generalized symmetry measure based algorithm is proposed for automatic eye location. Without the requirement of a training process, the method is simple, fast and fully tested using thousands of images from the BioID and BANCA databases. An automatic user identification system, consisting of detection, recognition and user management modules, has been developed. The system can effectively detect faces from real video streams, identify them and retrieve corresponding user information from the application database. Different detection and recognition algorithms can also be easily integrated into the framework
    corecore