179 research outputs found

    Convex Optimization Based Bit Allocation for Light Field Compression under Weighting and Consistency Constraints

    Full text link
    Compared with conventional image and video, light field images introduce the weight channel, as well as the visual consistency of rendered view, information that has to be taken into account when compressing the pseudo-temporal-sequence (PTS) created from light field images. In this paper, we propose a novel frame level bit allocation framework for PTS coding. A joint model that measures weighted distortion and visual consistency, combined with an iterative encoding system, yields the optimal bit allocation for each frame by solving a convex optimization problem. Experimental results show that the proposed framework is effective in producing desired distortion distribution based on weights, and achieves up to 24.7% BD-rate reduction comparing to the default rate control algorithm.Comment: published in IEEE Data Compression Conference, 201

    Bit Allocation using Optimization

    Full text link
    In this paper, we consider the problem of bit allocation in neural video compression (NVC). Due to the frame reference structure, current NVC methods using the same R-D (Rate-Distortion) trade-off parameter λ\lambda for all frames are suboptimal, which brings the need for bit allocation. Unlike previous methods based on heuristic and empirical R-D models, we propose to solve this problem by gradient-based optimization. Specifically, we first propose a continuous bit implementation method based on Semi-Amortized Variational Inference (SAVI). Then, we propose a pixel-level implicit bit allocation method using iterative optimization by changing the SAVI target. Moreover, we derive the precise R-D model based on the differentiable trait of NVC. And we show the optimality of our method by proofing its equivalence to the bit allocation with precise R-D model. Experimental results show that our approach significantly improves NVC methods and outperforms existing bit allocation methods. Our approach is plug-and-play for all differentiable NVC methods, and it can be directly adopted on existing pre-trained models

    Correcting the Sub-optimal Bit Allocation

    Full text link
    In this paper, we investigate the problem of bit allocation in Neural Video Compression (NVC). First, we reveal that a recent bit allocation approach claimed to be optimal is, in fact, sub-optimal due to its implementation. Specifically, we find that its sub-optimality lies in the improper application of semi-amortized variational inference (SAVI) on latent with non-factorized variational posterior. Then, we show that the corrected version of SAVI on non-factorized latent requires recursively applying back-propagating through gradient ascent, based on which we derive the corrected optimal bit allocation algorithm. Due to the computational in-feasibility of the corrected bit allocation, we design an efficient approximation to make it practical. Empirical results show that our proposed correction significantly improves the incorrect bit allocation in terms of R-D performance and bitrate error, and outperforms all other bit allocation methods by a large margin. The source code is provided in the supplementary material

    Multiple description video coding for real-time applications using HEVC

    Full text link
    Remote control vehicles require the transmission of large amounts of data, and video is one of the most important sources for the driver. To ensure reliable video transmission, the encoded video stream is transmitted simultaneously over multiple channels. However, this solution incurs a high transmission cost due to the wireless channel's unreliable and random bit loss characteristics. To address this issue, it is necessary to use more efficient video encoding methods that can make the video stream robust to noise. In this paper, we propose a low-complexity, low-latency 2-channel Multiple Description Coding (MDC) solution with an adaptive Instantaneous Decoder Refresh (IDR) frame period, which is compatible with the HEVC standard. This method shows better resistance to high packet loss rates with lower complexity
    • …
    corecore