2 research outputs found

    Sub-optimal convergence of discontinuous Galerkin methods with central fluxes for linear hyperbolic equations with even degree polynomial approximations

    Full text link
    In this paper, we theoretically and numerically verify that the discontinuous Galerkin (DG) methods with central fluxes for linear hyperbolic equations on non-uniform meshes have sub-optimal convergence properties when measured in the L2L^2-norm for even degree polynomial approximations. On uniform meshes, the optimal error estimates are provided for arbitrary number of cells in one and multi-dimensions, improving previous results. The theoretical findings are found to be sharp and consistent with numerical results.Comment: 27 pages, 1 figur

    Sparse Grid Central Discontinuous Galerkin Method for Linear Hyperbolic Systems in High Dimensions

    Full text link
    In this paper, we develop sparse grid central discontinuous Galerkin (CDG) scheme for linear hyperbolic systems with variable coefficients in high dimensions. The scheme combines the CDG framework with the sparse grid approach, with the aim of breaking the curse of dimensionality. A new hierarchical representation of piecewise polynomials on the dual mesh is introduced and analyzed, resulting in a sparse finite element space that can be used for non-periodic problems. Theoretical results, such as L2L^2 stability and error estimates are obtained for scalar problems. CFL conditions are studied numerically comparing discontinuous Galerkin (DG), CDG, sparse grid DG and sparse grid CDG methods. Numerical results including scalar linear equations, acoustic and elastic waves are provided
    corecore