9,529 research outputs found

    Distributed time management in transputer networks

    Get PDF
    For real-time applications in a distributed system a common notion of time is indispensable. Clocks are used for time measurement, determination of causality, process synchronization and generating unique identifications. All this is only possible if there is a time reference of specified accuracy. Since the local clocks in a distributed system tend to drift away from each other, they need to be adjusted periodically. If the application allows an accuracy that can be met by software, this may be achieved by a distributed clock synchronization algorithm, which creates and maintains a global time reference for all nodes of the network. The design and simulation of such an algorithm for a distributed system consisting of transputers is described. It is based on second order filtered adjustment of the clock rates rather than updating the clock values at onc

    On the Estimation of Nonrandom Signal Coefficients from Jittered Samples

    Get PDF
    This paper examines the problem of estimating the parameters of a bandlimited signal from samples corrupted by random jitter (timing noise) and additive iid Gaussian noise, where the signal lies in the span of a finite basis. For the presented classical estimation problem, the Cramer-Rao lower bound (CRB) is computed, and an Expectation-Maximization (EM) algorithm approximating the maximum likelihood (ML) estimator is developed. Simulations are performed to study the convergence properties of the EM algorithm and compare the performance both against the CRB and a basic linear estimator. These simulations demonstrate that by post-processing the jittered samples with the proposed EM algorithm, greater jitter can be tolerated, potentially reducing on-chip ADC power consumption substantially.Comment: 11 pages, 8 figure

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    Aggregation of Descriptive Regularization Methods with Hardware/Software Co-Design for Remote Sensing Imaging

    Get PDF
    This study consider the problem of high-resolution imaging of the remote sensing (RS) environment formalized in terms of a nonlinear ill- posed inverse problem of nonparametric estimation of the power spatial spectrum pattern (SSP) of the wavefield scattered from an extended remotely sensed scene (referred to as the scene image). However, the remote sensing techniques for reconstructive imaging in many RS application areas are relatively unacceptable for being implemented in a (near) real time implementation. In this work, we address a new aggregated descriptive-regularization (DR) method and the Hardware/Software (HW/SW) co-design for the SSP reconstruction from the uncertain speckle-corrupted measurement data in a computationally efficient parallel fashion that meets the (near) real time image processing requirements. The hardware design is performed via efficient systolic arrays (SAs). Finally, the efficiency both in resolution enhancement and in computational complexity reduction metrics of the aggregated descriptive-regularized and the HW/SW co-design method is presented via numerical simulations and by the performance analysis of the implementation based on a Xilinx Field Programmable Gate Array (FPGA) XC4VSX35-10ff668.Universidad de GuadalajaraUniversidad Autónoma de YucatánInstituto Tecnológico de Mérid
    corecore