298 research outputs found

    Optimal Decision Procedures for Satisfiability in Fragments of Alternating-time Temporal Logics

    Get PDF
    We consider several natural fragments of the alternating-time temporal logics ATL* and ATL with restrictions on the nesting between temporal operators and strategic quantifiers. We develop optimal decision procedures for satisfiability in these fragments, showing that they have much lower complexities than the full languages. In particular, we prove that the satisfiability problem for state formulae in the full `strategically flat' fragment of ATL* is PSPACE-complete, whereas the satisfiability problems in the flat fragments of ATL and ATL+^{+} are ÎŁ3P\Sigma^P_3-complete. We note that the nesting hierarchies for fragments of ATL* collapse in terms of expressiveness above nesting depth 1, hence our results cover all such fragments with lower complexities

    Satisfiability Games for Branching-Time Logics

    Full text link
    The satisfiability problem for branching-time temporal logics like CTL*, CTL and CTL+ has important applications in program specification and verification. Their computational complexities are known: CTL* and CTL+ are complete for doubly exponential time, CTL is complete for single exponential time. Some decision procedures for these logics are known; they use tree automata, tableaux or axiom systems. In this paper we present a uniform game-theoretic framework for the satisfiability problem of these branching-time temporal logics. We define satisfiability games for the full branching-time temporal logic CTL* using a high-level definition of winning condition that captures the essence of well-foundedness of least fixpoint unfoldings. These winning conditions form formal languages of \omega-words. We analyse which kinds of deterministic {\omega}-automata are needed in which case in order to recognise these languages. We then obtain a reduction to the problem of solving parity or B\"uchi games. The worst-case complexity of the obtained algorithms matches the known lower bounds for these logics. This approach provides a uniform, yet complexity-theoretically optimal treatment of satisfiability for branching-time temporal logics. It separates the use of temporal logic machinery from the use of automata thus preserving a syntactical relationship between the input formula and the object that represents satisfiability, i.e. a winning strategy in a parity or B\"uchi game. The games presented here work on a Fischer-Ladner closure of the input formula only. Last but not least, the games presented here come with an attempt at providing tool support for the satisfiability problem of complex branching-time logics like CTL* and CTL+

    Quantified CTL: Expressiveness and Complexity

    Full text link
    While it was defined long ago, the extension of CTL with quantification over atomic propositions has never been studied extensively. Considering two different semantics (depending whether propositional quantification refers to the Kripke structure or to its unwinding tree), we study its expressiveness (showing in particular that QCTL coincides with Monadic Second-Order Logic for both semantics) and characterise the complexity of its model-checking and satisfiability problems, depending on the number of nested propositional quantifiers (showing that the structure semantics populates the polynomial hierarchy while the tree semantics populates the exponential hierarchy)

    A Team Based Variant of CTL

    Full text link
    We introduce two variants of computation tree logic CTL based on team semantics: an asynchronous one and a synchronous one. For both variants we investigate the computational complexity of the satisfiability as well as the model checking problem. The satisfiability problem is shown to be EXPTIME-complete. Here it does not matter which of the two semantics are considered. For model checking we prove a PSPACE-completeness for the synchronous case, and show P-completeness for the asynchronous case. Furthermore we prove several interesting fundamental properties of both semantics.Comment: TIME 2015 conference version, modified title and motiviatio

    On the Hybrid Extension of CTL and CTL+

    Full text link
    The paper studies the expressivity, relative succinctness and complexity of satisfiability for hybrid extensions of the branching-time logics CTL and CTL+ by variables. Previous complexity results show that only fragments with one variable do have elementary complexity. It is shown that H1CTL+ and H1CTL, the hybrid extensions with one variable of CTL+ and CTL, respectively, are expressively equivalent but H1CTL+ is exponentially more succinct than H1CTL. On the other hand, HCTL+, the hybrid extension of CTL with arbitrarily many variables does not capture CTL*, as it even cannot express the simple CTL* property EGFp. The satisfiability problem for H1CTL+ is complete for triply exponential time, this remains true for quite weak fragments and quite strong extensions of the logic

    In the Maze of Data Languages

    Full text link
    In data languages the positions of strings and trees carry a label from a finite alphabet and a data value from an infinite alphabet. Extensions of automata and logics over finite alphabets have been defined to recognize data languages, both in the string and tree cases. In this paper we describe and compare the complexity and expressiveness of such models to understand which ones are better candidates as regular models
    • …
    corecore