27,144 research outputs found

    Fast and Accurate 3D Face Recognition Using Registration to an Intrinsic Coordinate System and Fusion of Multiple Region classifiers

    Get PDF
    In this paper we present a new robust approach for 3D face registration to an intrinsic coordinate system of the face. The intrinsic coordinate system is defined by the vertical symmetry plane through the nose, the tip of the nose and the slope of the bridge of the nose. In addition, we propose a 3D face classifier based on the fusion of many dependent region classifiers for overlapping face regions. The region classifiers use PCA-LDA for feature extraction and the likelihood ratio as a matching score. Fusion is realised using straightforward majority voting for the identification scenario. For verification, a voting approach is used as well and the decision is defined by comparing the number of votes to a threshold. Using the proposed registration method combined with a classifier consisting of 60 fused region classifiers we obtain a 99.0% identification rate on the all vs first identification test of the FRGC v2 data. A verification rate of 94.6% at FAR=0.1% was obtained for the all vs all verification test on the FRGC v2 data using fusion of 120 region classifiers. The first is the highest reported performance and the second is in the top-5 of best performing systems on these tests. In addition, our approach is much faster than other methods, taking only 2.5 seconds per image for registration and less than 0.1 ms per comparison. Because we apply feature extraction using PCA and LDA, the resulting template size is also very small: 6 kB for 60 region classifiers

    Hybrid Fusion for Biometrics: Combining Score-level and Decision-level Fusion

    Get PDF
    A general framework of fusion at decision level, which works on ROCs instead of matching scores, is investigated. Under this framework, we further propose a hybrid fusion method, which combines the score-level and decision-level fusions, taking advantage of both fusion modes. The hybrid fusion adaptively tunes itself between the two levels of fusion, and improves the final performance over the original two levels. The proposed hybrid fusion is simple and effective for combining different biometrics

    Biometric Authentication System on Mobile Personal Devices

    Get PDF
    We propose a secure, robust, and low-cost biometric authentication system on the mobile personal device for the personal network. The system consists of the following five key modules: 1) face detection; 2) face registration; 3) illumination normalization; 4) face verification; and 5) information fusion. For the complicated face authentication task on the devices with limited resources, the emphasis is largely on the reliability and applicability of the system. Both theoretical and practical considerations are taken. The final system is able to achieve an equal error rate of 2% under challenging testing protocols. The low hardware and software cost makes the system well adaptable to a large range of security applications

    Design and implementation of a multi-modal biometric system for company access control

    Get PDF
    This paper is about the design, implementation, and deployment of a multi-modal biometric system to grant access to a company structure and to internal zones in the company itself. Face and iris have been chosen as biometric traits. Face is feasible for non-intrusive checking with a minimum cooperation from the subject, while iris supports very accurate recognition procedure at a higher grade of invasivity. The recognition of the face trait is based on the Local Binary Patterns histograms, and the Daughman\u2019s method is implemented for the analysis of the iris data. The recognition process may require either the acquisition of the user\u2019s face only or the serial acquisition of both the user\u2019s face and iris, depending on the confidence level of the decision with respect to the set of security levels and requirements, stated in a formal way in the Service Level Agreement at a negotiation phase. The quality of the decision depends on the setting of proper different thresholds in the decision modules for the two biometric traits. Any time the quality of the decision is not good enough, the system activates proper rules, which ask for new acquisitions (and decisions), possibly with different threshold values, resulting in a system not with a fixed and predefined behaviour, but one which complies with the actual acquisition context. Rules are formalized as deduction rules and grouped together to represent \u201cresponse behaviors\u201d according to the previous analysis. Therefore, there are different possible working flows, since the actual response of the recognition process depends on the output of the decision making modules that compose the system. Finally, the deployment phase is described, together with the results from the testing, based on the AT&T Face Database and the UBIRIS database

    Optimal decision fusion and its application on 3D face recognition

    Get PDF
    Fusion is a popular practice to combine multiple classifiers or multiple modalities in biometrics. In this paper, optimal decision fusion (ODF) by AND rule and OR rule is presented. We show that the decision fusion can be done in an optimal way such that it always gives an improvement in terms of error rates over the classifiers that are fused. Both the optimal decision fusion theory and the experimental results on the FRGC 2D and 3D face data are given. Experiments show that the optimal decision fusion effectively combines the 2D texture and 3D shape information, and boosts the performance of the system
    • ā€¦
    corecore