882 research outputs found

    Distributed Game Theoretic Optimization and Management of Multichannel ALOHA Networks

    Full text link
    The problem of distributed rate maximization in multi-channel ALOHA networks is considered. First, we study the problem of constrained distributed rate maximization, where user rates are subject to total transmission probability constraints. We propose a best-response algorithm, where each user updates its strategy to increase its rate according to the channel state information and the current channel utilization. We prove the convergence of the algorithm to a Nash equilibrium in both homogeneous and heterogeneous networks using the theory of potential games. The performance of the best-response dynamic is analyzed and compared to a simple transmission scheme, where users transmit over the channel with the highest collision-free utility. Then, we consider the case where users are not restricted by transmission probability constraints. Distributed rate maximization under uncertainty is considered to achieve both efficiency and fairness among users. We propose a distributed scheme where users adjust their transmission probability to maximize their rates according to the current network state, while maintaining the desired load on the channels. We show that our approach plays an important role in achieving the Nash bargaining solution among users. Sequential and parallel algorithms are proposed to achieve the target solution in a distributed manner. The efficiencies of the algorithms are demonstrated through both theoretical and simulation results.Comment: 34 pages, 6 figures, accepted for publication in the IEEE/ACM Transactions on Networking, part of this work was presented at IEEE CAMSAP 201

    On the Throughput Cost of Physical Layer Security in Decentralized Wireless Networks

    Full text link
    This paper studies the throughput of large-scale decentralized wireless networks with physical layer security constraints. In particular, we are interested in the question of how much throughput needs to be sacrificed for achieving a certain level of security. We consider random networks where the legitimate nodes and the eavesdroppers are distributed according to independent two-dimensional Poisson point processes. The transmission capacity framework is used to characterize the area spectral efficiency of secure transmissions with constraints on both the quality of service (QoS) and the level of security. This framework illustrates the dependence of the network throughput on key system parameters, such as the densities of legitimate nodes and eavesdroppers, as well as the QoS and security constraints. One important finding is that the throughput cost of achieving a moderate level of security is quite low, while throughput must be significantly sacrificed to realize a highly secure network. We also study the use of a secrecy guard zone, which is shown to give a significant improvement on the throughput of networks with high security requirements.Comment: Accepted for publication in IEEE Transactions on Wireless Communication

    Random Access Game in Fading Channels with Capture: Equilibria and Braess-like Paradoxes

    Full text link
    The Nash equilibrium point of the transmission probabilities in a slotted ALOHA system with selfish nodes is analyzed. The system consists of a finite number of heterogeneous nodes, each trying to minimize its average transmission probability (or power investment) selfishly while meeting its average throughput demand over the shared wireless channel to a common base station (BS). We use a game-theoretic approach to analyze the network under two reception models: one is called power capture, the other is called signal to interference plus noise ratio (SINR) capture. It is shown that, in some situations, Braess-like paradoxes may occur. That is, the performance of the system may become worse instead of better when channel state information (CSI) is available at the selfish nodes. In particular, for homogeneous nodes, we analytically present that Braess-like paradoxes occur in the power capture model, and in the SINR capture model with the capture ratio larger than one and the noise to signal ratio sufficiently small.Comment: 30 pages, 5 figure

    Interference-Based Optimal Power-Efficient Access Scheme for Cognitive Radio Networks

    Full text link
    In this paper, we propose a new optimization-based access strategy of multipacket reception (MPR) channel for multiple secondary users (SUs) accessing the primary user (PU) spectrum opportunistically. We devise an analytical model that realizes the multipacket access strategy of SUs that maximizes the throughput of individual backlogged SUs subject to queue stability of the PU. All the network receiving nodes have MPR capability. We aim at maximizing the throughput of the individual SUs such that the PU's queue is maintained stable. Moreover, we are interested in providing an energy-efficient cognitive scheme. Therefore, we include energy constraints on the PU and SU average transmitted energy to the optimization problem. Each SU accesses the medium with certain probability that depends on the PU's activity, i.e., active or inactive. The numerical results show the advantage in terms of SU throughput of the proposed scheme over the conventional access scheme, where the SUs access the channel randomly with fixed power when the PU is sensed to be idle
    corecore