2 research outputs found

    Modeling, analyzing, and mitigating dissonance between alerting systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 2002.Includes bibliographical references (p. 161-164).Alerting systems are becoming pervasive in process operations, which may result in the potential for dissonance or conflict in information from different alerting systems that suggests different threat levels and/or actions to resolve hazards. Little is currently available to help in predicting or solving the dissonance problem. This thesis presents a methodology to model and analyze dissonance between alerting systems, providing both a theoretical foundation for understanding dissonance and a practical basis from which specific problems can be addressed. A state-space representation of multiple alerting system operation is generalized that can be tailored across a variety of applications. Based on the representation, two major causes of dissonance are identified: logic differences and sensor error. Additionally, several possible types of dissonance are identified. A mathematical analysis method is developed to identify the conditions for dissonance originating from logic differences. A probabilistic analysis methodology is developed to estimate the probability of dissonance originating from sensor error, and to compare the relative contribution to dissonance of sensor error against the contribution from logic differences. A hybrid model, which describes the dynamic behavior of the process with multiple alerting systems, is developed to identify dangerous dissonance space, from which the process can lead to disaster. Methodologies to avoid or mitigate dissonance are outlined. Two examples are used to demonstrate the application of the methodology. First, a(cont.) conceptual In-Trail Spacing example is presented. The methodology is applied to identify the conditions for possible dissonance, to identify relative contribution of logic difference and sensor error, and to identify dangerous dissonance space. Several proposed mitigation methods are demonstrated in this example. In the second example, the methodology is applied to address the dissonance problem between two air traffic alert and avoidance systems: the existing Traffic Alert and Collision Avoidance System (TCAS) vs. the proposed Airborne Conflict Management system (ACM). Conditions on ACM resolution maneuvers are identified to avoid dynamic dissonance between TCAS and ACM.by Lixia Song.Ph.D
    corecore