6 research outputs found

    Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows

    Full text link
    Distributed computing networks, tasked with both packet transmission and processing, require the joint optimization of communication and computation resources. We develop a dynamic control policy that determines both routes and processing locations for packets upon their arrival at a distributed computing network. The proposed policy, referred to as Universal Computing Network Control (UCNC), guarantees that packets i) are processed by a specified chain of service functions, ii) follow cycle-free routes between consecutive functions, and iii) are delivered to their corresponding set of destinations via proper packet duplications. UCNC is shown to be throughput-optimal for any mix of unicast and multicast traffic, and is the first throughput-optimal policy for non-unicast traffic in distributed computing networks with both communication and computation constraints. Moreover, simulation results suggest that UCNC yields substantially lower average packet delay compared with existing control policies for unicast traffic

    Optimal Control of Distributed Computing Networks With Mixed-Cast Traffic Flows

    No full text

    Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows

    No full text
    Distributed computing networks, tasked with both packet transmission and processing, require the joint optimization of communication and computation resources. We develop a dynamic control policy that determines both routes and processing locations for packets upon their arrival at a distributed computing network. The proposed policy, referred to as Universal Computing Network Control (UCNC), guarantees that packets i) are processed by a specified chain of service functions, ii) follow cycle-free routes between consecutive functions, and iii) are delivered to their corresponding set of destinations via proper packet duplications. UCNC is shown to be throughput-optimal for any mix of unicast and multicast traffic, and is the first throughput-optimal policy for non-unicast traffic in distributed computing networks with both communication and computation constraints. Moreover, simulation results suggest that UCNC yields substantially lower average packet delay compared with existing control policies for unicast traffic.DTRA (Grants HDTRA1-13-1-0021 and HDTRA1-14-1-0058)NSF (Grant CNS-1617091

    Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows

    No full text
    Distributed computing networks, tasked with both packet transmission and processing, require the joint optimization of communication and computation resources. We develop a dynamic control policy that determines both routes and processing locations for packets upon their arrival at a distributed computing network. The proposed policy, referred to as Universal Computing Network Control (UCNC), guarantees that packets i) are processed by a specified chain of service functions, ii) follow cycle-free routes between consecutive functions, and iii) are delivered to their corresponding set of destinations via proper packet duplications. UCNC is shown to be throughput-optimal for any mix of unicast and multicast traffic, and is the first throughput-optimal policy for non-unicast traffic in distributed computing networks with both communication and computation constraints. Moreover, simulation results suggest that UCNC yields substantially lower average packet delay compared with existing control policies for unicast traffic

    Optimal Control of Distributed Computing Networks with Mixed-Cast Traffic Flows

    No full text
    © 2018 IEEE. Distributed computing networks, tasked with both packet transmission and processing, require the joint optimization of communication and computation resources. We develop a dynamic control policy that determines both routes and processing locations for packets upon their arrival at a distributed computing network. The proposed policy, referred to as Universal Computing Network Control (UCNC), guarantees that packets i) are processed by a specified chain of service functions, ii) follow cycle-free routes between consecutive functions, and iii) are delivered to their corresponding set of destinations via proper packet duplications. UCNC is shown to be throughput-optimal for any mix of unicast and multicast traffic, and is the first throughput-optimal policy for non-unicast traffic in distributed computing networks with both communication and computation constraints. Moreover, simulation results suggest that UCNC yields substantially lower average packet delay compared with existing control policies for unicast traffic
    corecore