4 research outputs found

    Linear-time filtering algorithms for the disjunctive constraint and a quadratic filtering algorithm for the cumulative not-first not-last

    Get PDF
    We present new filtering algorithms for Disjunctive and Cumulative constraints, each of which improves the complexity of the state-of-theart algorithms by a factor of log n. We show how to perform TimeTabling and Detectable Precedences in linear time on the Disjunctive constraint. Furthermore, we present a linear-time Overload Checking for the Disjunctive and Cumulative constraints. Finally, we show how the rule of Not-first/Not-last can be enforced in quadratic time for the Cumulative constraint. These algorithms rely on the union find data structure, from which we take advantage to introduce a new data structure that we call it time line. This data structure provides constant time operations that were previously implemented in logarithmic time by the Θ-tree data structure. Experiments show that these new algorithms are competitive even for a small number of tasks and outperform existing algorithms as the number of tasks increases. We also show that the time line can be used to solve specific scheduling problems
    corecore