1,223 research outputs found

    Approaching Throughput-optimality in Distributed CSMA Scheduling Algorithms with Collisions

    Full text link
    It was shown recently that CSMA (Carrier Sense Multiple Access)-like distributed algorithms can achieve the maximal throughput in wireless networks (and task processing networks) under certain assumptions. One important, but idealized assumption is that the sensing time is negligible, so that there is no collision. In this paper, we study more practical CSMA-based scheduling algorithms with collisions. First, we provide a Markov chain model and give an explicit throughput formula which takes into account the cost of collisions and overhead. The formula has a simple form since the Markov chain is "almost" time-reversible. Second, we propose transmission-length control algorithms to approach throughput optimality in this case. Sufficient conditions are given to ensure the convergence and stability of the proposed algorithms. Finally, we characterize the relationship between the CSMA parameters (such as the maximum packet lengths) and the achievable capacity region.Comment: To appear in IEEE/ACM Transactions on Networking. This is the longer versio

    Distributed Random Access Algorithm: Scheduling and Congesion Control

    Full text link
    This paper provides proofs of the rate stability, Harris recurrence, and epsilon-optimality of CSMA algorithms where the backoff parameter of each node is based on its backlog. These algorithms require only local information and are easy to implement. The setup is a network of wireless nodes with a fixed conflict graph that identifies pairs of nodes whose simultaneous transmissions conflict. The paper studies two algorithms. The first algorithm schedules transmissions to keep up with given arrival rates of packets. The second algorithm controls the arrivals in addition to the scheduling and attempts to maximize the sum of the utilities of the flows of packets at the different nodes. For the first algorithm, the paper proves rate stability for strictly feasible arrival rates and also Harris recurrence of the queues. For the second algorithm, the paper proves the epsilon-optimality. Both algorithms operate with strictly local information in the case of decreasing step sizes, and operate with the additional information of the number of nodes in the network in the case of constant step size
    • …
    corecore