92 research outputs found

    Designing Coalition-Proof Reverse Auctions over Continuous Goods

    Full text link
    This paper investigates reverse auctions that involve continuous values of different types of goods, general nonconvex constraints, and second stage costs. We seek to design the payment rules and conditions under which coalitions of participants cannot influence the auction outcome in order to obtain higher collective utility. Under the incentive-compatible Vickrey-Clarke-Groves mechanism, we show that coalition-proof outcomes are achieved if the submitted bids are convex and the constraint sets are of a polymatroid-type. These conditions, however, do not capture the complexity of the general class of reverse auctions under consideration. By relaxing the property of incentive-compatibility, we investigate further payment rules that are coalition-proof without any extra conditions on the submitted bids and the constraint sets. Since calculating the payments directly for these mechanisms is computationally difficult for auctions involving many participants, we present two computationally efficient methods. Our results are verified with several case studies based on electricity market data

    Optimal No-regret Learning in Repeated First-price Auctions

    Full text link
    We study online learning in repeated first-price auctions with censored feedback, where a bidder, only observing the winning bid at the end of each auction, learns to adaptively bid in order to maximize her cumulative payoff. To achieve this goal, the bidder faces a challenging dilemma: if she wins the bid--the only way to achieve positive payoffs--then she is not able to observe the highest bid of the other bidders, which we assume is iid drawn from an unknown distribution. This dilemma, despite being reminiscent of the exploration-exploitation trade-off in contextual bandits, cannot directly be addressed by the existing UCB or Thompson sampling algorithms in that literature, mainly because contrary to the standard bandits setting, when a positive reward is obtained here, nothing about the environment can be learned. In this paper, by exploiting the structural properties of first-price auctions, we develop the first learning algorithm that achieves O(Tlog2T)O(\sqrt{T}\log^2 T) regret bound when the bidder's private values are stochastically generated. We do so by providing an algorithm on a general class of problems, which we call monotone group contextual bandits, where the same regret bound is established under stochastically generated contexts. Further, by a novel lower bound argument, we characterize an Ω(T2/3)\Omega(T^{2/3}) lower bound for the case where the contexts are adversarially generated, thus highlighting the impact of the contexts generation mechanism on the fundamental learning limit. Despite this, we further exploit the structure of first-price auctions and develop a learning algorithm that operates sample-efficiently (and computationally efficiently) in the presence of adversarially generated private values. We establish an O(Tlog3T)O(\sqrt{T}\log^3 T) regret bound for this algorithm, hence providing a complete characterization of optimal learning guarantees for this problem

    SENSOR MANAGEMENT FOR LOCALIZATION AND TRACKING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless sensor networks (WSNs) are very useful in many application areas including battlefield surveillance, environment monitoring and target tracking, industrial processes and health monitoring and control. The classical WSNs are composed of large number of densely deployed sensors, where sensors are battery-powered devices with limited signal processing capabilities. In the crowdsourcing based WSNs, users who carry devices with built-in sensors are recruited as sensors. In both WSNs, the sensors send their observations regarding the target to a central node called the fusion center for final inference. With limited resources, such as limited communication bandwidth among the WSNs and limited sensor battery power, it is important to investigate algorithms which consider the trade-off between system performance and energy cost in the WSNs. The goal of this thesis is to study the sensor management problems in resource limited WSNs while performing target localization or tracking tasks. Most research on sensor management problems in classical WSNs assumes that the number of sensors to be selected is given a priori, which is often not true in practice. Moreover, sensor network design usually involves consideration of multiple conflicting objectives, such as maximization of the lifetime of the network or the inference performance, while minimizing the cost of resources such as energy, communication or deployment costs. Thus, in this thesis, we formulate the sensor management problem in a classical resource limited WSN as a multi-objective optimization problem (MOP), whose goal is to find a set of sensor selection strategies which re- veal the trade-off between the target tracking performance and the number of selected sensors to perform the task. In this part of the thesis, we propose a novel mutual information upper bound (MIUB) based sensor selection scheme, which has low computational complexity, same as the Fisher information (FI) based sensor selection scheme, and gives estimation performance similar to the mutual information (MI) based sensor selection scheme. Without knowing the number of sensors to be selected a priori, the MOP gives a set of sensor selection strategies that reveal different trade-offs between two conflicting objectives: minimization of the number of selected sensors and minimization of the gap between the performance metric (MIUB and FI) when all the sensors transmit measurements and when only the selected sensors transmit their measurements based on the sensor selection strategy. Crowdsourcing has been applied to sensing applications recently where users carrying devices with built-in sensors are allowed or even encouraged to contribute toward the inference tasks. Crowdsourcing based WSNs provide cost effectiveness since a dedicated sensing infrastructure is no longer needed for different inference tasks, also, such architectures allow ubiquitous coverage. Most sensing applications and systems assume voluntary participation of users. However, users consume their resources while participating in a sensing task, and they may also have concerns regarding their privacy. At the same time, the limitation on communication bandwidth requires proper management of the participating users. Thus, there is a need to design optimal mechanisms which perform selection of the sensors in an efficient manner as well as providing appropriate incentives to the users to motivate their participation. In this thesis, optimal mechanisms are designed for sensor management problems in crowdsourcing based WSNs where the fusion center (FC) con- ducts auctions by soliciting bids from the selfish sensors, which reflect how much they value their energy cost. Furthermore, the rationality and truthfulness of the sensors are guaranteed in our model. Moreover, different considerations are included in the mechanism design approaches: 1) the sensors send analog bids to the FC, 2) the sensors are only allowed to send quantized bids to the FC because of communication limitations or some privacy issues, 3) the state of charge (SOC) of the sensors affects the energy consumption of the sensors in the mechanism, and, 4) the FC and the sensors communicate in a two-sided market

    Medium Access Control protocol for Collaborative Spectrum Learning in Wireless Networks

    Full text link
    In recent years there is a growing effort to provide learning algorithms for spectrum collaboration. In this paper we present a medium access control protocol which allows spectrum collaboration with minimal regret and high spectral efficiency in highly loaded networks. We present a fully-distributed algorithm for spectrum collaboration in congested ad-hoc networks. The algorithm jointly solves both the channel allocation and access scheduling problems. We prove that the algorithm has an optimal logarithmic regret. Based on the algorithm we provide a medium access control protocol which allows distributed implementation of the algorithm in ad-hoc networks. The protocol utilizes single-channel opportunistic carrier sensing to carry out a low-complexity distributed auction in time and frequency. We also discuss practical implementation issues such as bounded frame size and speed of convergence. Computer simulations comparing the algorithm to state-of-the-art distributed medium access control protocols show the significant advantage of the proposed scheme
    corecore