6,421 research outputs found

    Optimal Algorithm for Bayesian Incentive-Compatible Exploration

    Full text link
    We consider a social planner faced with a stream of myopic selfish agents. The goal of the social planner is to maximize the social welfare, however, it is limited to using only information asymmetry (regarding previous outcomes) and cannot use any monetary incentives. The planner recommends actions to agents, but her recommendations need to be Bayesian Incentive Compatible to be followed by the agents. Our main result is an optimal algorithm for the planner, in the case that the actions realizations are deterministic and have limited support, making significant important progress on this open problem. Our optimal protocol has two interesting features. First, it always completes the exploration of a priori more beneficial actions before exploring a priori less beneficial actions. Second, the randomization in the protocol is correlated across agents and actions (and not independent at each decision time).Comment: EC 201

    Near-Optimal and Robust Mechanism Design for Covering Problems with Correlated Players

    Full text link
    We consider the problem of designing incentive-compatible, ex-post individually rational (IR) mechanisms for covering problems in the Bayesian setting, where players' types are drawn from an underlying distribution and may be correlated, and the goal is to minimize the expected total payment made by the mechanism. We formulate a notion of incentive compatibility (IC) that we call {\em support-based IC} that is substantially more robust than Bayesian IC, and develop black-box reductions from support-based-IC mechanism design to algorithm design. For single-dimensional settings, this black-box reduction applies even when we only have an LP-relative {\em approximation algorithm} for the algorithmic problem. Thus, we obtain near-optimal mechanisms for various covering settings including single-dimensional covering problems, multi-item procurement auctions, and multidimensional facility location.Comment: Major changes compared to the previous version. Please consult this versio

    Incentivizing Exploration with Linear Contexts and Combinatorial Actions

    Full text link
    We advance the study of incentivized bandit exploration, in which arm choices are viewed as recommendations and are required to be Bayesian incentive compatible. Recent work has shown under certain independence assumptions that after collecting enough initial samples, the popular Thompson sampling algorithm becomes incentive compatible. We give an analog of this result for linear bandits, where the independence of the prior is replaced by a natural convexity condition. This opens up the possibility of efficient and regret-optimal incentivized exploration in high-dimensional action spaces. In the semibandit model, we also improve the sample complexity for the pre-Thompson sampling phase of initial data collection.Comment: International Conference on Machine Learning (ICML) 202

    Algorithmic Bayesian Persuasion

    Full text link
    Persuasion, defined as the act of exploiting an informational advantage in order to effect the decisions of others, is ubiquitous. Indeed, persuasive communication has been estimated to account for almost a third of all economic activity in the US. This paper examines persuasion through a computational lens, focusing on what is perhaps the most basic and fundamental model in this space: the celebrated Bayesian persuasion model of Kamenica and Gentzkow. Here there are two players, a sender and a receiver. The receiver must take one of a number of actions with a-priori unknown payoff, and the sender has access to additional information regarding the payoffs. The sender can commit to revealing a noisy signal regarding the realization of the payoffs of various actions, and would like to do so as to maximize her own payoff assuming a perfectly rational receiver. We examine the sender's optimization task in three of the most natural input models for this problem, and essentially pin down its computational complexity in each. When the payoff distributions of the different actions are i.i.d. and given explicitly, we exhibit a polynomial-time (exact) algorithm, and a "simple" (1−1/e)(1-1/e)-approximation algorithm. Our optimal scheme for the i.i.d. setting involves an analogy to auction theory, and makes use of Border's characterization of the space of reduced-forms for single-item auctions. When action payoffs are independent but non-identical with marginal distributions given explicitly, we show that it is #P-hard to compute the optimal expected sender utility. Finally, we consider a general (possibly correlated) joint distribution of action payoffs presented by a black box sampling oracle, and exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria guarantee. We show that this result is the best possible in the black-box model for information-theoretic reasons

    Envy Freedom and Prior-free Mechanism Design

    Full text link
    We consider the provision of an abstract service to single-dimensional agents. Our model includes position auctions, single-minded combinatorial auctions, and constrained matching markets. When the agents' values are drawn from a distribution, the Bayesian optimal mechanism is given by Myerson (1981) as a virtual-surplus optimizer. We develop a framework for prior-free mechanism design and analysis. A good mechanism in our framework approximates the optimal mechanism for the distribution if there is a distribution; moreover, when there is no distribution this mechanism still performs well. We define and characterize optimal envy-free outcomes in symmetric single-dimensional environments. Our characterization mirrors Myerson's theory. Furthermore, unlike in mechanism design where there is no point-wise optimal mechanism, there is always a point-wise optimal envy-free outcome. Envy-free outcomes and incentive-compatible mechanisms are similar in structure and performance. We therefore use the optimal envy-free revenue as a benchmark for measuring the performance of a prior-free mechanism. A good mechanism is one that approximates the envy free benchmark on any profile of agent values. We show that good mechanisms exist, and in particular, a natural generalization of the random sampling auction of Goldberg et al. (2001) is a constant approximation

    Pricing Ad Slots with Consecutive Multi-unit Demand

    Full text link
    We consider the optimal pricing problem for a model of the rich media advertisement market, as well as other related applications. In this market, there are multiple buyers (advertisers), and items (slots) that are arranged in a line such as a banner on a website. Each buyer desires a particular number of {\em consecutive} slots and has a per-unit-quality value viv_i (dependent on the ad only) while each slot jj has a quality qjq_j (dependent on the position only such as click-through rate in position auctions). Hence, the valuation of the buyer ii for item jj is viqjv_iq_j. We want to decide the allocations and the prices in order to maximize the total revenue of the market maker. A key difference from the traditional position auction is the advertiser's requirement of a fixed number of consecutive slots. Consecutive slots may be needed for a large size rich media ad. We study three major pricing mechanisms, the Bayesian pricing model, the maximum revenue market equilibrium model and an envy-free solution model. Under the Bayesian model, we design a polynomial time computable truthful mechanism which is optimum in revenue. For the market equilibrium paradigm, we find a polynomial time algorithm to obtain the maximum revenue market equilibrium solution. In envy-free settings, an optimal solution is presented when the buyers have the same demand for the number of consecutive slots. We conduct a simulation that compares the revenues from the above schemes and gives convincing results.Comment: 27page
    • …
    corecore