147,783 research outputs found

    Reflectance Hashing for Material Recognition

    Full text link
    We introduce a novel method for using reflectance to identify materials. Reflectance offers a unique signature of the material but is challenging to measure and use for recognizing materials due to its high-dimensionality. In this work, one-shot reflectance is captured using a unique optical camera measuring {\it reflectance disks} where the pixel coordinates correspond to surface viewing angles. The reflectance has class-specific stucture and angular gradients computed in this reflectance space reveal the material class. These reflectance disks encode discriminative information for efficient and accurate material recognition. We introduce a framework called reflectance hashing that models the reflectance disks with dictionary learning and binary hashing. We demonstrate the effectiveness of reflectance hashing for material recognition with a number of real-world materials

    Leaf Optical Responses to Light and Soil Nutrient Availability in Temperature Deciduous Trees

    Get PDF
    Leaf optical parameters influence light availability at the cellular, leaf, and canopy scale of integration. While recent studies have focused on leaf optical responses to acute plant stress, the effects of changes in plant resources on leaf optics remain poorly characterized. We examined leaf optical and anatomical responses of five temperate deciduous tree species to moderate changes in nutrient and light availability. Spectral reflectance in the visible waveband generally increased at high light, but decreased with increased nutrient availability. Patterns of both spectral reflectance and absorptance were primarily determined by chlorophyll concentration although carotenoid concentration was also influential. While most anatomical features did not explain residual variation in reflectance, cuticle thickness was significantly related to reflectance at complementary angles compared to the angle of incidence. Absorptance did not change with light environment; however, absorption efficiency per unit biomass increased by approximately 40% under low light, due to reduced leaf mass per area. We conclude that changes in resource availability differentially influence leaf optical properties and that such changes are driven primarily by changes in pigment concentrations. The magnitude of leaf optical responses to moderate changes in resource availability was comparable to those of acute stress responses and varied among species

    Optical monitoring system

    Get PDF
    Instrument can measure optical transmission, reflectance, and scattering. This information can be used to identify changes in optical properties or deviations from required optical standards. Device consists of monochromatic source, photo detector, transfer mirror, and hemiellipsoid. System might be used to measure optical properties of thin film

    Highly Accurate Determination of Heterogeneously Stacked Van-der-Waals Materials by Optical Microspectroscopy

    Get PDF
    The composition of Van-der-Waals heterostructures is conclusively determined using a hybrid evaluation scheme of data acquired by optical microspectroscopy. This scheme deploys a parameter set comprising both change in reflectance and wavelength shift of distinct extreme values in reflectance spectra. Furthermore, the method is supported by an accurate analytical model describing reflectance of multilayer systems acquired by optical microspectroscopy. This approach allows uniquely for discrimination of 2D materials like graphene and hBN and, thus, quantitative analysis of Van-der-Waals heterostructures containing structurally very similar materials. The physical model features a transfer matrix method which allows for flexible, modular description of complex optical systems and may easily be extended to individual setups. It accounts for numerical apertures of applied objective lenses and a glass fiber which guides the light into the spectrometer by two individual weighting functions. The scheme is proven by highly accurate quantification of the number of layers of graphene and hBN in Van-der-Waals heterostructures. In this exemplary case, the fingerprint of graphene involves distinct deviations of reflectance accompanied by additional wavelength shifts of extreme values. In contrast to graphene the fingerprint of hBN reveals a negligible deviation in absolute reflectance causing this material being only detectable by spectral shifts of extreme values.Comment: 12 pages, 4 figure

    Temperature Dependence of the FIR Reflectance of LaSrGaO4

    Full text link
    The reflectance of single crystal LaSrGaO4 has been measured from approx 50 to 40000 cm^-1 along the "a" and "c" axis. The optical properties have been calculated from a Kramers-Kronig analysis of the reflectance for both polarizations. The reflectance curves have been fit using a product of Lorentzian oscillators.Comment: 12 pages including 5 figures and 2 tables. Latex file, Requires elsart.sty file and eps

    Conductivity and Dissociation in Metallic Hydrogen: Implications for Planetary Interiors

    Full text link
    Liquid metallic hydrogen (LMH) was recently produced under static compression and high temperatures in bench-top experiments. Here, we report a study of the optical reflectance of LMH in the pressure region of 1.4-1.7 Mbar and use the Drude free-electron model to determine its optical conductivity. We find static electrical conductivity of metallic hydrogen to be 11,000-15,000 S/cm. A substantial dissociation fraction is required to best fit the energy dependence of the observed reflectance. LMH at our experimental conditions is largely atomic and degenerate, not primarily molecular. We determine a plasma frequency and the optical conductivity. Properties are used to analyze planetary structure of hydrogen rich planets such as Jupiter

    Optical anisotropy induced by ion bombardment of Ag(001)

    Get PDF
    Grazing incidence ion bombardment results in the formation of nanoripples that induce an anisotropic optical reflection The evolution of the reflectance anisotropy has been monitored in situ with reflectance anisotropy spectroscopy. The Rayleigh-Rice theory (RRT) has been used to analyze the optical spectra quantitatively and provides the evolution of the average ripple period and root-mean-squared surface roughness. After an incipient phase, both the increase in the periodicity and the roughness vary roughly with the square root of the sputter time. Additional high-resolution low-energy electron diffraction (HR-LEED) measurements have been performed to characterize details of the average structure created by ion bombardment

    Full microscopic treatment of the optical response of the Si(100)2x1 surface

    Get PDF
    The optical reflection from the Si(100) 2 × 1 surface has been calculated, using the discrete dipole model and local polarizabilities obtained from quantum mechanical cluster calculations. Results have been compared with experimental differential reflectance (Si) and optical anisotropy measurements (Ge)

    Tunable asymmetric reflectance in silver films near the percolation threshold

    Full text link
    We report on the optical characterization of semicontinuous nanostructured silver films exhibiting tunable optical reflectance asymmetries. The films are obtained using a multi-step process, where a nanocrystalline silver film is first chemically deposited on a glass substrate and then subsequently coated with additional silver via thermal vacuum-deposition. The resulting films exhibit reflectance asymmetries whose dispersions may be tuned both in sign and in magnitude, as well as a universal, tunable spectral crossover point. We obtain a correlation between the optical response and charge transport in these films, with the spectral crossover point indicating the onset of charge percolation. Such broadband, dispersion-tunable asymmetric reflectors may find uses in future light-harvesting systems.Comment: 18 pages, 5 figures, accepted by Journal of Applied Physic
    corecore