23,089 research outputs found

    Piano Pedaller: A Measurement System for Classification and Visualisation of Piano Pedalling Techniques

    Get PDF
    date-added: 2017-12-22 18:53:42 +0000 date-modified: 2017-12-22 19:03:05 +0000 keywords: piano gesture recognition, optical sensor, real-time data acquisition, bela, music informatics local-url: https://pdfs.semanticscholar.org/fd00/fcfba2f41a3f182d2000ca4c05fb2b01c475.pdf publisher-url: http://homes.create.aau.dk/dano/nime17/ bdsk-url-1: http://www.nime.org/proceedings/2017/nime2017_paper0062.pdfdate-added: 2017-12-22 18:53:42 +0000 date-modified: 2017-12-22 19:03:05 +0000 keywords: piano gesture recognition, optical sensor, real-time data acquisition, bela, music informatics local-url: https://pdfs.semanticscholar.org/fd00/fcfba2f41a3f182d2000ca4c05fb2b01c475.pdf publisher-url: http://homes.create.aau.dk/dano/nime17/ bdsk-url-1: http://www.nime.org/proceedings/2017/nime2017_paper0062.pdfdate-added: 2017-12-22 18:53:42 +0000 date-modified: 2017-12-22 19:03:05 +0000 keywords: piano gesture recognition, optical sensor, real-time data acquisition, bela, music informatics local-url: https://pdfs.semanticscholar.org/fd00/fcfba2f41a3f182d2000ca4c05fb2b01c475.pdf publisher-url: http://homes.create.aau.dk/dano/nime17/ bdsk-url-1: http://www.nime.org/proceedings/2017/nime2017_paper0062.pdfdate-added: 2017-12-22 18:53:42 +0000 date-modified: 2017-12-22 19:03:05 +0000 keywords: piano gesture recognition, optical sensor, real-time data acquisition, bela, music informatics local-url: https://pdfs.semanticscholar.org/fd00/fcfba2f41a3f182d2000ca4c05fb2b01c475.pdf publisher-url: http://homes.create.aau.dk/dano/nime17/ bdsk-url-1: http://www.nime.org/proceedings/2017/nime2017_paper0062.pdfdate-added: 2017-12-22 18:53:42 +0000 date-modified: 2017-12-22 19:03:05 +0000 keywords: piano gesture recognition, optical sensor, real-time data acquisition, bela, music informatics local-url: https://pdfs.semanticscholar.org/fd00/fcfba2f41a3f182d2000ca4c05fb2b01c475.pdf publisher-url: http://homes.create.aau.dk/dano/nime17/ bdsk-url-1: http://www.nime.org/proceedings/2017/nime2017_paper0062.pdfThis paper presents the results of a study of piano pedalling techniques on the sustain pedal using a newly designed measurement system named Piano Pedaller. The system is comprised of an optical sensor mounted in the piano pedal bearing block and an embedded platform for recording audio and sensor data. This enables recording the pedalling gesture of real players and the piano sound under normal playing conditions. Using the gesture data collected from the system, the task of classifying these data by pedalling technique was undertaken using a Support Vector Machine (SVM). Results can be visualised in an audio based score following application to show pedalling together with the player’s position in the score

    End-to-End Multiview Gesture Recognition for Autonomous Car Parking System

    Get PDF
    The use of hand gestures can be the most intuitive human-machine interaction medium. The early approaches for hand gesture recognition used device-based methods. These methods use mechanical or optical sensors attached to a glove or markers, which hinders the natural human-machine communication. On the other hand, vision-based methods are not restrictive and allow for a more spontaneous communication without the need of an intermediary between human and machine. Therefore, vision gesture recognition has been a popular area of research for the past thirty years. Hand gesture recognition finds its application in many areas, particularly the automotive industry where advanced automotive human-machine interface (HMI) designers are using gesture recognition to improve driver and vehicle safety. However, technology advances go beyond active/passive safety and into convenience and comfort. In this context, one of America’s big three automakers has partnered with the Centre of Pattern Analysis and Machine Intelligence (CPAMI) at the University of Waterloo to investigate expanding their product segment through machine learning to provide an increased driver convenience and comfort with the particular application of hand gesture recognition for autonomous car parking. In this thesis, we leverage the state-of-the-art deep learning and optimization techniques to develop a vision-based multiview dynamic hand gesture recognizer for self-parking system. We propose a 3DCNN gesture model architecture that we train on a publicly available hand gesture database. We apply transfer learning methods to fine-tune the pre-trained gesture model on a custom-made data, which significantly improved the proposed system performance in real world environment. We adapt the architecture of the end-to-end solution to expand the state of the art video classifier from a single image as input (fed by monocular camera) to a multiview 360 feed, offered by a six cameras module. Finally, we optimize the proposed solution to work on a limited resources embedded platform (Nvidia Jetson TX2) that is used by automakers for vehicle-based features, without sacrificing the accuracy robustness and real time functionality of the system

    The passive operating mode of the linear optical gesture sensor

    Full text link
    The study evaluates the influence of natural light conditions on the effectiveness of the linear optical gesture sensor, working in the presence of ambient light only (passive mode). The orientations of the device in reference to the light source were modified in order to verify the sensitivity of the sensor. A criterion for the differentiation between two states: "possible gesture" and "no gesture" was proposed. Additionally, different light conditions and possible features were investigated, relevant for the decision of switching between the passive and active modes of the device. The criterion was evaluated based on the specificity and sensitivity analysis of the binary ambient light condition classifier. The elaborated classifier predicts ambient light conditions with the accuracy of 85.15%. Understanding the light conditions, the hand pose can be detected. The achieved accuracy of the hand poses classifier trained on the data obtained in the passive mode in favorable light conditions was 98.76%. It was also shown that the passive operating mode of the linear gesture sensor reduces the total energy consumption by 93.34%, resulting in 0.132 mA. It was concluded that optical linear sensor could be efficiently used in various lighting conditions.Comment: 10 pages, 14 figure
    • …
    corecore