1,170,624 research outputs found

    Power density spectrum of NGC 5548 and the nature of its variability

    Get PDF
    We derive power density spectra in the optical and X-ray band in the timescale range from several years down to \sim a day. We suggest that the optical power density spectrum consists of two separate components: long timescale variations and short timescale variations, with the dividing timescale around 100 days. The shape of the short timescale component is similar to X-ray power density spectrum which is consistent with the interpretation of short timescale optical variations being caused by X-ray reprocessing. We show that the observed optical long timescale variability is consistent with thermal pulsations of the accretion disc.Comment: Accepted for publication in The Monthly Notices of the Royal Astronomical Societ

    Mapping dusty star formation in and around a cluster at z=0.81 by wide-field imaging with AKARI

    Full text link
    We present environmental dependence of dusty star forming activity in and around the cluster RXJ1716.4+6708 at z=0.81 based on wide-field and multi-wavelength observations with Suprime-Cam on the Subaru telescope and IRC onboard the AKARI satellite. Our optical data shows that the optical colour distribution of galaxies starts to dramatically change from blue to red at the medium-density environment such as cluster outskirts, groups and filaments. By combining with infrared data, we find that 15 micron galaxies tend to have optical colours between the red sequence and the blue cloud with a tail into the red sequence. The spatial distribution of the 15 micron galaxies over ~200 arcmin^2 around the cluster reveals that few 15 micron galaxies are detected in the cluster central region. This is probably due to the low star forming activity in the cluster core. However, interestingly, the fraction of 15 micron galaxies in the medium-density environments is as high as in the low-density field, despite the fact that the optical colours start to change in the medium-density environments. Furthermore, we find that 15 micron galaxies which have optically red colours (candidates for dusty red galaxies) and galaxies with high specific star formation rates are also concentrated in the medium-density environment. These results imply that the star forming activity in galaxies in groups and filaments is enhanced due to some environmental effects specific to the medium-density environment, and such a phenomenon is probably directly connected to the truncation of star forming activity in galaxies seen as the dramatic change in optical colours in such environments.Comment: 15 pages, 14 figures, accepted for publication in MNRA

    Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures

    Get PDF
    We have found that there is more than one type of conducting carriers generated in LaAlO3/SrTiO3 heterostructures by comparing the sheet carrier density and mobility from optical transmission spectroscopy with those from dc-transport measurements. When multiple types of carriers exist, optical characterization dominantly reflects the contribution from the high-density carriers whereas dc-transport measurements may exaggerate the contribution of the high-mobility carriers even though they are present at low-density. Since the low-temperature mobilities determined by dc-transport in the LaAlO3/SrTiO3 heterostructures are much higher than those extracted by optical method, we attribute the origin of high-mobility transport to the low-density conducting carriers.Comment: 3 figures, supplemental materia

    Radio Frequency Magneto-Optical Trapping of CaF with High Density

    Get PDF
    We demonstrate significantly improved magneto-optical trapping of molecules using a very slow cryogenic beam source and RF modulated and DC magnetic fields. The RF MOT confines 1.1(3)×1051.1(3) \times 10^5 CaF molecules at a density of 4(1)×1064(1) \times 10^6 cm3^{-3}, which is an order of magnitude greater than previous molecular MOTs. Near Doppler-limited temperatures of 340(20)340(20) μ\muK are attained. The achieved density enables future work to directly load optical tweezers and create optical arrays for quantum simulation.Comment: 5 Pages, 4 Figure

    Can Non-Gaussian Cosmological Models Explain the WMAP's High Optical Depth for Reionization?

    Full text link
    The first-year Wilkinson Microwave Anisotropy Probe data suggest a high optical depth for Thomson scattering of 0.17 +/- 0.04, implying that the universe was reionized at an early epoch, z ~ 20. Such early reionization is likely to be caused by UV photons from first stars, but it appears that the observed high optical depth can be reconciled within the standard structure formation model only if star-formation in the early universe was extremely efficient. With normal star-formation efficiencies, cosmological models with non-Gaussian density fluctuations may circumvent this conflict as high density peaks collapse at an earlier epoch than in models with Gaussian fluctuations. We study cosmic reionization in non-Gaussian models and explore to what extent, within available constraints, non-Gaussianities affect the reionization history. For mild non-Gaussian fluctuations at redshifts of 30 to 50, the increase in optical depth remains at a level of a few percent and appears unlikely to aid significantly in explaining the measured high optical depth. On the other hand, within available observational constraints, increasing the non-Gaussian nature of density fluctuations can easily reproduce the optical depth and may remain viable in underlying models of non-Gaussianity with a scale-dependence.Comment: 5 pages, 2 figure

    Strict calculation of the light statistics at the output of a travelling wave optical amplifier

    Get PDF
    A new method for calculating the probability density function of the photon number propagating through a travelling wave optical amplifier with no restriction on its working regime (linear and nonlinear) is reported. The authors show that the widely used Gaussian approximation of the probability density function does not match the real statistics if the incident optical power is small.Peer ReviewedPostprint (published version

    Optical and dc transport properties of a strongly correlated charge density wave system: exact solution in the ordered phase of the spinless Falicov-Kimball model with dynamical mean-field theory

    Full text link
    We derive the dynamical mean-field theory equations for transport in an ordered charge-density-wave phase on a bipartite lattice. The formalism is applied to the spinless Falicov-Kimball model on a hypercubic lattice at half filling. We determine the many-body density of states, the dc charge and heat conductivities, and the optical conductivity. Vertex corrections continue to vanish within the ordered phase, but the density of states and the transport coefficients show anomalous behavior due to the rapid development of thermally activated subgap states. We also examine the optical sum rule and sum rules for the first three moments of the Green's functions within the ordered phase and see that the total optical spectral weight in the ordered phase either decreases or increases depending on the strength of the interactions.Comment: 14 pages, 14 figures, submitted to Phys. Rev.
    corecore