121,526 research outputs found
All fiber polarization insensitive detection for spectrometer based optical coherence tomography using optical switch
Polarization dependent image artifacts are common in optical coherence tomography imaging. Polarization insensitive detection scheme for swept source based optical coherence tomography systems is well established but is yet to be demonstrated for all fiber spectrometer-based Fourier domain optical coherence tomography systems. In this work, we present an all fiber polarization insensitive detection scheme for spectrometer based optical coherence tomography systems. Images from chicken breast muscle tissue were acquired to demonstrate the effectiveness of this scheme for the conventional Fourier domain optical coherence tomography system
Experimental Demonstration of Spectral Intensity Optical Coherence Tomography
We demonstrate experimentally quantum-inspired, spectral-domain intensity
optical coherence tomography. We show that the technique allows for both axial
resolution improvement and dispersion cancellation compared to conventional
optical coherence tomography. The method does not involve scanning and it works
with classical light sources and standard photodetectors. The measurements are
in excellent agreement with the theoretical predictions. We also propose an
approach that enables the elimination of potential artifacts arising from
multiple interfaces
Polarization-resolved second-harmonic-generation optical coherence tomography in collagen
We describe a novel imaging technique, second-harmonic-generation optical coherence tomography (SHOCT). This technique combines the spatial resolution and depth penetration of optical coherence tomography (OCT) with the molecular sensitivity of second-harmonic-generation spectroscopy. As a consequence of the coherent detection required for OCT, polarization-resolved images arise naturally. We demonstrate this new technique on a skin sample from the belly of Icelandic salmon, acquiring polarization-resolved SHOCT and OCT images simultaneously
Phase-dispersion optical tomography
We report on phase-dispersion optical tomography, a new imaging technique based on phase measurements using low-coherence interferometry. The technique simultaneously probes the target with fundamental and second-harmonic light and interferometrically measures the relative phase shift of the backscattered light fields. This phase change can arise either from reflection at an interface within a sample or from bulk refraction. We show that this highly sensitive 5 phase technique can complement optical coherence tomography, which measures electric field amplitude, by revealing otherwise undetectable dispersive variations in the sample
Second harmonic optical coherence tomography
Second harmonic optical coherence tomography, which uses coherence gating of
second-order nonlinear optical response of biological tissues for imaging, is
described and demonstrated. Femtosecond laser pulses were used to excite second
harmonic waves from collagen harvested from rat tail tendon and a reference
nonlinear crystal. Second harmonic interference fringe signals were detected
and used for image construction. Because of the strong dependence of second
harmonic generation on molecular and tissue structures, this technique offers
contrast and resolution enhancement to conventional optical coherence
tomography.Comment: 3 pages, 5 figures. Submitted on November 8, 2003, this paper has
recently been accepted by Optics Letter
Phase-conjugate optical coherence tomography
Quantum optical coherence tomography (Q-OCT) offers a factor-of-two
improvement in axial resolution and the advantage of even-order dispersion
cancellation when it is compared to conventional OCT (C-OCT). These features
have been ascribed to the non-classical nature of the biphoton state employed
in the former, as opposed to the classical state used in the latter.
Phase-conjugate OCT (PC-OCT), introduced here, shows that non-classical light
is not necessary to reap Q-OCT's advantages. PC-OCT uses classical-state signal
and reference beams, which have a phase-sensitive cross-correlation, together
with phase conjugation to achieve the axial resolution and even-order
dispersion cancellation of Q-OCT with a signal-to-noise ratio that can be
comparable to that of C-OCT.Comment: 4 pages, 3 figure
Polarization-sensitive quantum-optical coherence tomography
We set forth a polarization-sensitive quantum-optical coherence tomography
(PS-QOCT) technique that provides axial optical sectioning with
polarization-sensitive capabilities. The technique provides a means for
determining information about the optical path length between isotropic
reflecting surfaces, the relative magnitude of the reflectance from each
interface, the birefringence of the interstitial material, and the orientation
of the optical axis of the sample. PS-QOCT is immune to sample dispersion and
therefore permits measurements to be made at depths greater than those
accessible via ordinary optical coherence tomography. We also provide a general
Jones matrix theory for analyzing PS-QOCT systems and outline an experimental
procedure for carrying out such measurements.Comment: 15 pages, 5 figures, to appear in Physical Review
Attenuation of the Ganglion Cell Layer in a Premature Infant Revealed with Handheld Spectral Domain Optical Coherence Tomography
Purpose: To report on subclinical retinal abnormalities shown through handheld spectral domain optical coherence tomography on a premature infant.
Methods: Case report.
Results: The initial and follow-up exams on a premature infant revealed severely attenuated ganglion cell and nerve fiber layers. There was cystoid macular edema in both eyes at the initial visits, which resolved by the 1-year follow-up.
Discussion: Optical coherence tomography can reveal significant retinal abnormalities in premature infants which are not detectable through funduscopic exam. Documenting such findings may be useful for the comprehensive management of vision problems in children with a history of premature birth
Evaluation of a cheap ultrasonic stage for light source coherence function measurement, optical coherence tomography and dynamic focusing
We evaluate the performance of a cheap ultrasonic stage in setups related to optical coherence tomography. The stage was used in several configurations: (1) optical delay line in an optical coherence tomography (OCT) setup; (2) as a delay line measuring coherence function of a low coherence source (e. g. superluminescent diode) and (3) in a dynamic focusing arrangement. The results are as follows: the stage is suitable for coherence function measurement (coherence length up to 70 mu m) of the light source and dynamic focusing. We found it unsuitable for OCT due to an unstable velocity profile. Despite this, the velocity profile has a repeatable shape (4% over 1000 A-scans) and slight modifications to the stage promise wider applications
- …
