131,815 research outputs found
Development of a strontium optical lattice clock for the SOC mission on the ISS
The ESA mission "Space Optical Clock" project aims at operating an optical
lattice clock on the ISS in approximately 2023. The scientific goals of the
mission are to perform tests of fundamental physics, to enable space-assisted
relativistic geodesy and to intercompare optical clocks on the ground using
microwave and optical links. The performance goal of the space clock is less
than uncertainty and
instability. Within an EU-FP7-funded project, a strontium optical lattice clock
demonstrator has been developed. Goal performances are instability below and fractional inaccuracy .
For the design of the clock, techniques and approaches suitable for later space
application are used, such as modular design, diode lasers, low power
consumption subunits, and compact dimensions. The Sr clock apparatus is fully
operational, and the clock transition in Sr was observed with linewidth
as small as 9 Hz.Comment: 12 pages, 8 figures, SPIE Photonics Europe 201
Making optical atomic clocks more stable with level laser stabilization
The superb precision of an atomic clock is derived from its stability. Atomic
clocks based on optical (rather than microwave) frequencies are attractive
because of their potential for high stability, which scales with operational
frequency. Nevertheless, optical clocks have not yet realized this vast
potential, due in large part to limitations of the laser used to excite the
atomic resonance. To address this problem, we demonstrate a cavity-stabilized
laser system with a reduced thermal noise floor, exhibiting a fractional
frequency instability of . We use this laser as a stable
optical source in a Yb optical lattice clock to resolve an ultranarrow 1 Hz
transition linewidth. With the stable laser source and the signal to noise
ratio (S/N) afforded by the Yb optical clock, we dramatically reduce key
stability limitations of the clock, and make measurements consistent with a
clock instability of
A transportable strontium optical lattice clock
We report on a transportable optical clock, based on laser-cooled strontium
atoms trapped in an optical lattice. The experimental apparatus is composed of
a compact source of ultra-cold strontium atoms including a compact cooling
laser set-up and a transportable ultra-stable laser for interrogating the
optical clock transition. The whole setup (excluding electronics) fits within a
volume of less than 2 m. The high degree of operation reliability of both
systems allowed the spectroscopy of the clock transition to be performed with
10 Hz resolution. We estimate an uncertainty of the clock of .Comment: 12 pages, 9 figures, to be published in Appl. Phys.
Development of a strontium optical lattice clock for the SOC mission on the ISS
Ultra-precise optical clocks in space will allow new studies in fundamental
physics and astronomy. Within an European Space Agency (ESA) program, the Space
Optical Clocks (SOC) project aims to install and to operate an optical lattice
clock on the International Space Station (ISS) towards the end of this decade.
It would be a natural follow-on to the ACES mission, improving its performance
by at least one order of magnitude. The payload is planned to include an
optical lattice clock, as well as a frequency comb, a microwave link, and an
optical link for comparisons of the ISS clock with ground clocks located in
several countries and continents. Within the EU-FP7-SPACE-2010-1 project no.
263500, during the years 2011-2015 a compact, modular and robust strontium
lattice optical clock demonstrator has been developed. Goal performance is a
fractional frequency instability below 1x10^{-15}, tau^{-1/2} and a fractional
inaccuracy below 5x10^{-17}. Here we describe the current status of the
apparatus' development, including the laser subsystems. Robust preparation of
cold {88}^Sr atoms in a second stage magneto-optical trap (MOT) is achieved.Comment: 27 Pages, 15 figures, Comptes Rendus Physique 201
Frequency ratios of Sr, Yb and Hg based optical lattice clocks and their applications
This article describes the recent progress of optical lattice clocks with
neutral strontium (Sr), ytterbium (Yb) and mercury (Hg)
atoms. In particular, we present frequency comparison between the clocks
locally via an optical frequency comb and between two Sr clocks at remote sites
using a phase-stabilized fibre link. We first review cryogenic Sr optical
lattice clocks that reduce the room-temperature blackbody radiation shift by
two orders of magnitude and serve as a reference in the following clock
comparisons. Similar physical properties of Sr and Yb atoms, such as transition
wavelengths and vapour pressure, have allowed our development of a compatible
clock for both species. A cryogenic Yb clock is evaluated by referencing a Sr
clock. We also report on a Hg clock, which shows one order of magnitude less
sensitivity to blackbody radiation, while its large nuclear charge makes the
clock sensitive to the variation of fine-structure constant. Connecting all
three types of clocks by an optical frequency comb, the ratios of the clock
frequencies are determined with uncertainties smaller than possible through
absolute frequency measurements. Finally, we describe a synchronous frequency
comparison between two Sr-based remote clocks over a distance of 15 km between
RIKEN and the University of Tokyo, as a step towards relativistic geodesy.Comment: 11 pages, 5 figures, invited review article in Comptes Rendus de
Physique 201
- …
