370 research outputs found

    Streamers, sprites, leaders, lightning: from micro- to macroscales

    Get PDF
    "Streamers, sprites, leaders, lightning: from micro- to macroscales" was the theme of a workshop in October 2007 in Leiden, The Netherlands; it brought researchers from plasma physics, electrical engineering and industry, geophysics and space physics, computational science and nonlinear dynamics together around the common topic of generation, structure and products of streamer-like electric breakdown. The present cluster issue collects relevant articles within this area; most of them were presented during the workshop. We here briefly discuss the research questions and very shortly review the papers in the cluster issue, and we also refer to a few recent papers in other journals.Comment: Editorial introduction for the cluster issue on "Streamers, sprites and lightning" in J. Phys. D, 13 pages, 74 reference

    Process of changing the refractive index of a composite containing a polymer and a compound having large dipole moment and polarizability and applications thereof

    Get PDF
    Fused ring bridge, ring locked dyes that form thermally stable photorfractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging

    Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: Nano-rheology and determination of pore size distributions from the shape of imbibition fronts

    Full text link
    We present gravimetrical, optical, and neutron imaging measurements of the capillarity-driven infiltration of mesoporous silica glass by hydrocarbons. Square-root-of-time Lucas-Washburn invasion kinetics are found for linear alkanes from n-decane (C10) to n-hexacontane (C60) and for squalane, a branched alkane, in porous Vycor with 6.5 nm or 10 nm pore diameter, respectively. Humidity-dependent experiments allow us to study the influence on the imbibition kinetics of water layers adsorbed on the pore walls. Except for the longest molecule studied, C60, the invasion kinetics can be described by bulk fluidity and bulk capillarity, provided we assume a sticking, pore-wall adsorbed boundary layer, i.e. a monolayer of water covered by a monolayer of flat-laying hydrocarbons. For C60, however, an enhanced imbibition speed compared to the value expected in the bulk is found. This suggests the onset of velocity slippage at the silica walls or a reduced shear viscosity due to the transition towards a polymer-like flow in confined geometries. Both, light scattering and neutron imaging indicate a pronounced roughening of the imbibition fronts. Their overall shape and width can be resolved by neutron imaging. The fronts can be described by a superposition of independent wetting fronts moving with pore size-dependent square-root-of-time laws and weighted according to the pore size distributions obtained from nitrogen gas sorption isotherms. This finding indicates that the shape of the imbibition front in a porous medium, such as Vycor glass, with interconnected, elongated pores, is solely determined by independent movements of liquid menisci. These are dictated by the Laplace pressure and hydraulic permeability variations and thus the pore size variation at the invasion front. Our results suggest that pore size distributions can be derived from the broadening of imbibition fronts.Comment: 28 pages, 12 figures, pre-print, in pres

    Thermally stable molecules with large dipole moments and polarizabilities and applications thereof

    Get PDF
    Disclosed are fused ring bridge, ring-locked dyes that form thermally stable photorefractive compositions. The fused ring bridge structures are .pi.-conjugated bonds in benzene-, naphthalene- or anthracene-derived fused ring systems that connect donor and acceptor groups. The donor and acceptor groups contribute to a high molecular dipole moment and linear polarizability anisotropy. The polarization characteristics of the dye molecules are stabilized since the bonds in the fused ring bridge are not susceptible to rotation, reducing the opportunity for photoisomerization. The dyes are compatible with polymeric compositions, including thermoplastics. The dyes are electrically neutral but have charge transport, electronic and orientational properties such that upon illumination of a composition containing the dye, the dye facilitates refractive index modulation and a photorefractive effect that can be utilized advantageously in numerous applications such as in optical quality devices and biological imaging

    On the microstructure of active cellular processes

    Get PDF
    Eukaryotic cells use a multitude of protein machines to regulate their own structure. In this thesis, we study how the geometrical arrangement of these interacting microscopic active elements sculpt the cell's own internal microstructure and its membrane enclosure.We first focus on the mechanisms generating actomyosin contractility, a crucial driver of cell motion and organization. We question the current position of highly organized, sarcomeric contractility as the only possible mechanism to drive contractility. We propose an alternative mechanism, and show that only it can account for the observed contractility of disordered actomyosin assemblies. It moreover yields qualitatively new effects in intracellular force transmission, including stress reversal and amplification, consistent with experimentally observations in fiber networks.We next elucidate some of the mechanisms through which the cell deforms and cuts its own membrane, thus enabling exchanges with the extracellular medium as well as between its internal compartments. We find that the function of the proteins responsible for this remodeling is strongly influenced by the mechanics of the membrane, and use these effects to elucidate the modes of operation of proteins clathrin and dynamin, as well as of protein complex ESCRT-III

    Shear-induced transitions and instabilities in surfactant wormlike micelles

    Full text link
    In this review, we report recent developments on the shear-induced transitions and instabilities found in surfactant wormlike micelles. The survey focuses on the non-linear shear rheology and covers a broad range of surfactant concentrations, from the dilute to the liquid-crystalline states and including the semi-dilute and concentrated regimes. Based on a systematic analysis of many surfactant systems, the present approach aims to identify the essential features of the transitions. It is suggested that these features define classes of behaviors. The review describes three types of transitions and/or instabilities : the shear-thickening found in the dilute regime, the shear-banding which is linked in some systems to the isotropic-to-nematic transition, and the flow-aligning and tumbling instabilities characteristic of nematic structures. In these three classes of behaviors, the shear-induced transitions are the result of a coupling between the internal structure of the fluid and the flow, resulting in a new mesoscopic organization under shear. This survey finally highlights the potential use of wormlike micelles as model systems for complex fluids and for applications.Comment: 64 pages, 31 figures, 2 table

    Amphiphilic Anionic Pt(II) Complexes: from spectroscopic to morphological changes

    Get PDF
    A new class of amphiphilic anionic platinum(II) bzimpy complexes has been demonstrated to show aggregation in water through PtfflfflfflPt and π–π stacking interactions. An interesting aggregation–partial deaggregation–aggregation process and a morphological transformation from vesicles to nanofibers have been demonstrated. These changes can be systematically controlled by the variation of solvent composition and could readily be probed by UV-vis absorption, emission, NMR, transmission electron microscopy and even with our naked eyes ...postprin

    The physics of streamer discharge phenomena

    Get PDF
    In this review we describe a transient type of gas discharge which is commonly called a streamer discharge, as well as a few related phenomena in pulsed discharges. Streamers are propagating ionization fronts with self-organized field enhancement at their tips that can appear in gases at (or close to) atmospheric pressure. They are the precursors of other discharges like sparks and lightning, but they also occur in for example corona reactors or plasma jets which are used for a variety of plasma chemical purposes. When enough space is available, streamers can also form at much lower pressures, like in the case of sprite discharges high up in the atmosphere. We explain the structure and basic underlying physics of streamer discharges, and how they scale with gas density. We discuss the chemistry and applications of streamers, and describe their two main stages in detail: inception and propagation. We also look at some other topics, like interaction with flow and heat, related pulsed discharges, and electron runaway and high energy radiation. Finally, we discuss streamer simulations and diagnostics in quite some detail. This review is written with two purposes in mind: First, we describe recent results on the physics of streamer discharges, with a focus on the work performed in our groups. We also describe recent developments in diagnostics and simulations of streamers. Second, we provide background information on the above-mentioned aspects of streamers. This review can therefore be used as a tutorial by researchers starting to work in the field of streamer physics.Comment: 89 pages, 29 figure
    corecore