3 research outputs found

    Normalization of Voltage-Sensitive Dye Signal with Functional Activity Measures

    Get PDF
    In general, signal amplitude in optical imaging is normalized using the well-established ΔF/F method, where functional activity is divided by the total fluorescent light flux. This measure is used both directly, as a measure of population activity, and indirectly, to quantify spatial and spatiotemporal activity patterns. Despite its ubiquitous use, the stability and accuracy of this measure has not been validated for voltage-sensitive dye imaging of mammalian neocortex in vivo. In this report, we find that this normalization can introduce dynamic biases. In particular, the ΔF/F is influenced by dye staining quality, and the ratio is also unstable over the course of experiments. As methods to record and analyze optical imaging signals become more precise, such biases can have an increasingly pernicious impact on the accuracy of findings, especially in the comparison of cytoarchitechtonic areas, in area-of-activation measurements, and in plasticity or developmental experiments. These dynamic biases of the ΔF/F method may, to an extent, be mitigated by a novel method of normalization, ΔF/ΔFepileptiform. This normalization uses as a reference the measured activity of epileptiform spikes elicited by global disinhibition with bicuculline methiodide. Since this normalization is based on a functional measure, i.e. the signal amplitude of “hypersynchronized” bursts of activity in the cortical network, it is less influenced by staining of non-functional elements. We demonstrate that such a functional measure can better represent the amplitude of population mass action, and discuss alternative functional normalizations based on the amplitude of synchronized spontaneous sleep-like activity. These findings demonstrate that the traditional ΔF/F normalization of voltage-sensitive dye signals can introduce pernicious inaccuracies in the quantification of neural population activity. They further suggest that normalization-independent metrics such as waveform propagation patterns, oscillations in single detectors, and phase relationships between detector pairs may better capture the biological information which is obtained by high-sensitivity imaging

    Imprinting modulates processing of visual information in the visual wulst of chicks

    Get PDF
    BACKGROUND: Imprinting behavior is one form of learning and memory in precocial birds. With the aim of elucidating of the neural basis for visual imprinting, we focused on visual information processing. RESULTS: A lesion in the visual wulst, which is similar functionally to the mammalian visual cortex, caused anterograde amnesia in visual imprinting behavior. Since the color of an object was one of the important cues for imprinting, we investigated color information processing in the visual wulst. Intrinsic optical signals from the visual wulst were detected in the early posthatch period and the peak regions of responses to red, green, and blue were spatially organized from the caudal to the nasal regions in dark-reared chicks. This spatial representation of color recognition showed plastic changes, and the response pattern along the antero-posterior axis of the visual wulst altered according to the color the chick was imprinted to. CONCLUSION: These results indicate that the thalamofugal pathway is critical for learning the imprinting stimulus and that the visual wulst shows learning-related plasticity and may relay processed visual information to indicate the color of the imprint stimulus to the memory storage region, e.g., the intermediate medial mesopallium

    Age Dependent Spatial Characteristics of Epileptiform Activity in Malformed Cortex

    Get PDF
    Developmental cortical malformations are a major cause of intractable seizures. Determining the location and timing of susceptibility for epileptiform activity is critical to identifying what mechanisms contribute to epileptogenesis in any model. Using the freeze lesion rat model of polymicrogyria, we have identified, in lesioned cortex, these two aspects of epileptogenesis. Previous studies have demonstrated that epileptiform activity cannot be evoked prior to postnatal day (P) 12, but the malformed cortex is more susceptible to seizures as early as P10. An increase in excitatory afferents to the epileptogenic zone occurs before the onset of network epileptiform activity. Whether or not these afferents are a major contributor to the hyperexcitability of the malformed cortex can be investigated by determining if they specifically create a susceptibility for epileptiform activity. We have examined that here by measuring whether that timing coincides with an increased susceptibility for evoked and spontaneous epileptiform activity. We report that the malformed cortex is more susceptible to evoked epileptiform activity than control cortex as earlier as P7 and as late as P36. Further, we also find that the form of spontaneous epileptiform activity in malformed cortex is altered as early as P7. The timing of these early disruptions of cortical function found here suggests additional epileptogenic mechanisms exist prior to the reported increase in excitatory afferents at P10. Determining the location of the seizure initiation is an essential part of epilepsy research. Some patients with developmental cortical malformations have seizures initiated within the malformation, while others have seizures generated by the surrounding cortex. Previous data in the freeze lesion model of microgyria suggests that the timing of freeze lesion (from P0 to P1) can shift the epileptogenic focus from the malformation to the paramicrogyrial region (PMR). We report that both the timing of the freeze lesion and the survival age of the animal can alter the epileptogenic circuitry of the malformation and surrounding tissue. These findings provide new insight to the timeline of hyperexcitability in malformed cortex and will possibly lead to greater surgical success for patients with intractable epilepsy
    corecore