6,236 research outputs found

    Microwave Photonics for Distributed Sensing

    Get PDF
    In the past few years, microwave-photonics technologies have been investigated for optical fiber sensing. By introducing microwave modulation into the optical system, the optical detection is synchronized with the microwave modulation frequency. As a result, the system has a high SNR and thus an improved detection limit. In addition, the phase of the microwave-modulated light can be obtained and Fourier transformed to find the time-of-arrival information for distributed sensing. Recently, an incoherent optical-carrier-based microwave interferometry (OCMI) technique has been demonstrated for fully distributed sensing with high spatial resolution and large measurement range. Since the modal interference has little influence on the OCMI signal, the OCMI is insensitive to the types of optical waveguide. Motivated by the needs of distributed measurement in the harsh environment, in the first part of this paper, several OCMI-based sensing systems were built by using special multimode waveguides to perform sensing for heavy duty applications. Driven by an interest on the high-resolution sensing, in the second part of the paper, I propose a coherence-gated microwave photonics interferometry (CMPI) technique, which uses a coherent light source to obtain the optical interference signal from cascaded weak reflectors. The coherence length of the light source is carefully chosen or controlled to gate the signal so that distributed sensing can be achieved. The experimental results indicate that the strain resolution can be better than 0.6 µε using a Fabry-Perot interferometer (FPI) with a cavity length of 1.5 cm. Further improvement of the strain resolution to the 1 nε level is achievable by increasing the cavity length of the FPI to over 1m. The CMPI has also been utilized for distributed dynamic measurement of vibration by using a new signal processing method. The fast time-varying optical interference intensity change induced by the sub-scan rate vibration is recorded in the frequency domain. After Fourier transform, distinctive features are shown at the vibration location in the time domain signal, where the vibration frequency and intensity can be retrieved. The signal processing method supports vibration measurement of multiple points with the measurable frequency of up to 20 kHz

    Sensing Applications in Aircrafts Using Polymer Optical Fibres

    Get PDF
    We report on recent advances in the use of inexpensive polymer optical fibres (POFs) for sensing applications in avionics. The sensors analysed in this manuscript take advantage of the unique properties of polymers, such as high flexibility, elasticity, and sensitivity, and they range from strain, elongation, and vibration interrogators to level and temperature meters, leading to cost-effective techniques for structural health monitoring in aircraft structures. We also highlight recent power-supply methods using Power-over-POF in order to feed sensors remotely, and we discuss the constraints imposed by connectors on the performance of POF networks in aircrafts

    POF 2016: 25th International Conference on Plastic Optical Fibres - proceedings

    Get PDF

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Design of optical fiber sensors and interrogation schemes

    Full text link
    [ES] Las fibras ópticas son dispositivos muy utilizados en el campo de las telecomunicaciones desde su descubrimiento. En las últimas décadas, las fibras ópticas comenzaron a utilizarse como sensores fotónicos. Los primeros trabajos se centraron en la medición de unas dimensiones físicas en un punto específico. Posteriormente, surgió la posibilidad de medir las propiedades de la fibra óptica en diferentes puntos a lo largo de la fibra. Este tipo de sensores se definen como sensores distribuidos. Los componentes optoelectrónicos fueron desarrollados e investigados para telecomunicaciones. Los avances en las telecomunicaciones hicieron posible el desarrollo de sistemas de interrogación para sensores de fibra óptica, creciendo en paralelo con los avances de las telecomunicaciones. Se desarrollaron sistemas de interrogación de fibra óptica que permiten el uso de una única fibra óptica monomodo estándar como sensor que puede monitorear decenas de miles de puntos de detección al mismo tiempo. Los métodos que extraen la información de detección de la señal reflejada en la fibra óptica son los más empleados debido a la facilidad de acceso al sensor y la flexibilidad de estos sistemas. Los más estudiados son la reflectometría en dominios de tiempo y frecuencia. La reflectometría óptica en el dominio del tiempo (OTDR) fue la primera técnica utilizada para detectar la posición de los fallos en las redes de comunica-ción de fibra óptica. El OTDR sensible a la fase hizo posible detectar la elongación y la temperatura en una posición específica. Paralelamente, los gratings de Bragg (FBG) se convirtieron en los dispositivos más utilizados para implementar sensores en fibra óptica discretos. Se desarrollaron técnicas de multiplexación para realizar la detección en múltiples puntos utilizando FGBs. La reflectometría realizada interrogando arrays de FBG débiles demuestra que mejora el rendimiento del sistema en comparación al uso de una fibra monomodo. Los sistemas de interrogatorio actuales tienen algunos inconvenientes. Algunos de ellos son velocidad de interrogatorio limitada, grandes dimensiones y alto costo. En esta tesis doctoral se desarrollaron nuevos sistemas de interrogación y sensores de fibra óptica para superar algunos de estos inconvenientes. Los sensores de fibra óptica de plástico demuestran ser una plataforma innovadora para desarrollar nuevos sensores y sistemas de interrogación de bajo costo y fáciles de implementar para fibras de plástico comerciales. Se investigó la reflectometría en el dominio del tiempo y las técnicas fotónicas de microondas para la interrogación de una matriz de rejillas débiles que permitieron simplificar el sistema de interrogación para la detección de temperatura y vibración.[CA] Les fibres òptiques són dispositius molt utilitzats en el camp de les telecomunica-cions des del seu descobriment. En les últimes dècades, les fibres òptiques van començar a utilitzar-se com a sensors fotònics. Els primers treballs es van centrar en el mesurament d'unes dimensions físiques en un punt específic. Posteriorment, va sorgir la possibilitat de mesurar les propietats de la fibra òptica en diferents punts al llarg de la fibra. Aquest tipus de sensors es defineixen com a sensors distribüits. Els components optoelectrònics van ser desenvolupats i investigats per a telecomunicacions. Els avanços en les telecomunicacions van fer possi-ble el desenvolupament de sistemes d'interrogació per a sensors de fibra òptica, creixent en paral·lel amb els avanços de les telecomunicacions. Es van desenvolupar sistemes d'interrogació de fibra òptica que permeten l'ús d'una única fibra òptica monomodo estàndard com a sensor que pot monitorar desenes de milers de punts de detecció al mateix temps. Els mètodes que extreuen la informació de detecció del senyal reflectit en la fibra òptica són els més utilitzats a causa de la facilitat d'accés al sensor i la flexibilitat d'aquests sistemes. Els més estudiats són la reflectometría en dominis de temps i freqüència. La reflectometría òptica en el domini del temps (OTDR) va ser la primera tècnica utilitzada per a detectar la posició de les fallades en les xarxes de comunicació de fibra òptica. El OTDR sensible a la fase va fer possible detectar l'elongació i la temperatura en una posició específica. Paral·lelament, els gratings de Bragg (FBG) es van convertir en els dispositius més utilitzats per a implementar sensors en fibra òptica discrets. Es van desenvolupar tècniques de multiplexació per a realitzar la detecció en múltiples punts utilitzant FGBs. La reflectometría realitzada interrogant arrays de FBG febles demostra que millora el rendiment del sistema en comparació a l'ús d'una fibra monomodo. Els sistemes d'interrogatori actuals tenen alguns inconvenients. Alguns d'ells són velocitat d'interrogatori limitada, voluminositat i alt cost. En aquesta tesi doctoral es van desenvolupar nous sistemes d'interrogació i sensors de fibra òptica per a superar alguns d'aquests inconvenients. Els sensors de fibra òptica de plàstic demostren ser una plataforma innovadora per a desenvolupar nous sensors i siste-mes d'interrogació de baix cost i fàcils d'implementar per a fibres de plàstic comercials. Es va investigar la reflectometría en el domini del temps i les tècniques fotòniques de microones per a la interrogació d'una matriu de reixetes febles que van permetre simplificar el sistema d'interrogació per a la detecció de temperatura i vibració.[EN] Optical fibers are devices largely used in telecommunication field since their discovery. In the last decades, optical fibers started to be used as photonic sensors. The first works were focused on the measurement of physical dimensions to a specific point. Afterward, emerged the possibility to measure the optical fiber properties at different locations along the fiber. These kinds of sensors are defined as distributed sensors. The optoelectronic components were developed and investigated for telecommunications. The progress in telecommunication made possible the development of optical fiber sensors interrogation systems, growing in parallel with the advances of telecommunications. Optical fiber interrogation systems were developed to use a single standard monomode optical fiber as a sensor that can monitor tens of thousands of sensing points at the same time. The methods that extract the sensing information from the backscattered signal in the optical fiber are widely employed because of the easiness of access to the sensor element and the flexibility of these systems. The most studied are the reflectometry in time and frequency domains. The optical time domain reflectometry (OTDR) was the first technique used to detect the position of the failures in the optical fiber communication networks. Using phase sensitive OTDR it is possible to sense strain and temperature at a specific position. In parallel, fiber Bragg gratings (FBGs) became the most widely used devices to implement discrete optical fiber sensors. Multiplexing techniques were developed to perform multi points sensing using these gratings. The reflectometry performed interrogating weak FBGs arrays demonstrate to improve the performance of the system employing a single mode fiber. The interrogation systems nowadays have some drawbacks. Some of them are limited speed of interrogation, bulkiness, and high cost. New interrogation systems and optical fiber sensors were developed in this doctoral thesis to overcome some of these drawbacks. Plastic optical fiber sensors demonstrate to be an innovative platform to develop both new sensors and low cost, easy to implement interrogation systems for commercial plastic fibers. Reflectometry in time domain and microwave photonic techniques were investigated for the interrogation of weak gratings array allowed to simplify the interrogation system for the sensing of temperature and vibration.I would like to greatly thank the European Union’s Horizon 2020 Research and Innovation Program that funded the research described in this thesis under the Marie Sklodowska-Curie Action Grant Agreement 722509.Sartiano, D. (2021). Design of optical fiber sensors and interrogation schemes [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161357TESI

    3D Micromachining of Optical Devices on Transparent Material by Ultrafast Laser

    Get PDF
    Ultrafast lasers, also referred to as ultrashort pulse lasers, have played an important role in the development of next generation manufacturing technologies in recent years. Their broad range of applications has been investigated in the field of microstructure processing for the biomedical, optical, and many other laboratory and industrial fields. Ultrafast laser machining has numerous unique advantages, including high precision, a small heat affected area, high peak intensity, 3D direct-writing, and other flexible capabilities When integrated with optical delivery, motion devices and control systems, one-step fabrication of assemble-free micro-devices can be realized. In particular, ultrafast lasers enable the creation of various three-dimensional, laser-induced modifications using an extremely high peak intensity over a short time frame, producing precise ablation of material and a small heat affected area in transparent materials. In contrast, lasers with longer pulse durations are based on a thermal effect, which results in significant melting in the heat affected area. In general, ultrafast laser micromachining can be used either to subtract material from or to change the material properties of both absorptive and transparent substances. Recently, integrated micro-devices including optical fiber sensors, microfluidic devices, and lab-on-chips (LOC) have gained worldwide recognition because of their unique characteristics. These micro-devices have been widely used for a broad range of applications, from fundamental research to industry. The development of integrated glass micro-devices introduced new possibilities for biomedical, environmental, civil and other industries and research areas. Of these devices, optical fiber sensors are recognized for their small size, accuracy, resistance to corrosion, fast response and high integration. They have demonstrated their excellent performance in sensing temperature, strain, refractive index and many other physical quantities. In addition to the all-in-fiber device, the LOC is another attractive candidate for use in micro-electro-mechanical systems (MEMS) because it includes several laboratory functions on a single integrated circuit. LOCs provide such advantages as low fluid volume consumption, improved analysis and response times due to short diffusion distances, and better process control, all of which are specific to their application. Combining ultrafast laser micromachining techniques with integrated micro-devices has resulted in research on a variety of fabrication methods targeted for particular purposes. In this dissertation, the direct creation of three-dimensional (3D) structures using an ultra-fast laser was investigated for use in optical devices. This research was motivated by the desire to understand more fully the relationship among laser parameters, material properties and 3D optical structures. Various all-in-fiber sensors in conjunction with femtosecond laser ablation and irradiation were investigated based on magnetic field, temperature and strain application. An incoherent optical carrier based microwave interferometry technique was used for in-situ weak reflector fabrication and a picosecond laser micromachining technique was introduced for developing LOCs with unlimited utilization potential

    Intrinsic Optical Fiber Sensor

    Get PDF

    Optical fibre-based sensors for oil and gas applications.

    Get PDF
    Oil and gas (O&G) explorations moving into deeper zones for enhanced oil and gas recovery are causing serious safety concerns across the world. The sensing of critical multiple parameters like high pressure, high temperature (HPHT), chemicals, etc., are required at longer distances in real-time. Traditional electrical sensors operate less effectively under these extreme environmental conditions and are susceptible to electromagnetic interference (EMI). Hence, there is a growing demand for improved sensors with enhanced measurement capabilities and also sensors that generates reliable data for enhanced oil and gas production. In addition to enhanced oil and gas recovery, the sensing technology should also be capable of monitoring the well bore integrity and safety. The sensing requirements of the O&G industry for improved sensing in deeper zones include increased transmission length, improved spatial coverage and integration of multiple sensors with multimodal sensing capability. This imposes problems like signal attenuation, crosstalks and cross sensitivities. Optical fibre-based sensors are expected to provide superior sensing capabilities compared to electrical sensors. This review paper covers a detailed review of different fibre-optic sensing technologies to identify a feasible sensing solution for the O&G industry
    corecore