297,750 research outputs found

    A new optical recording medium

    Get PDF
    Method has been developed for doping lithium niobiate crystals with transition metal to increase rate at which crystal can record optical data. Discovery may facilitate development of system for analog storage of TV frames, printed pages, photographs, and other visual information

    Atom holography

    Full text link
    We study the conditions under which atomic condensates can be used as a recording media and then suggest a reading scheme which allows to reconstruct an object with atomic reading beam. We show that good recording can be achieved for flat condensate profiles and for negative detunings between atomic Bohr frequency and optical field frequency. The resolution of recording dramatically depends on the relation between the healing length of the condensate and the spatial frequency contents of the optical fields involved.Comment: 8 pages, 5 figures, Late

    Patterned medium for heat assisted magnetic recording

    Get PDF
    Heat assisted magnetic recording (HAMR) a potential solution to extend the limits of conventional magnetic recording. In HAMR, the heating of the recording medium is achieved with a near-field optical transducer. Although the literature suggests novel transducers, there is little consideration of the optical and thermal aspects of the magnetic medium. In this letter we suggest a recording medium that provides a significant enhancement in optical absorption and localized heating. The thermal profiles of the proposed medium and the conventional medium are compared using finite element method solutions of Maxwell’s and the heat transfer equations

    Simulated electronic heterodyne recording and processing of pulsed-laser holograms

    Get PDF
    The electronic recording of pulsed-laser holograms is proposed. The polarization sensitivity of each resolution element of the detector is controlled independently to add an arbitrary phase to the image waves. This method which can be used to simulate heterodyne recording and to process three-dimensional optical images, is based on a similar method for heterodyne recording and processing of continuous-wave holograms

    Portable reflectance spectrometer

    Get PDF
    A portable reflectance spectrometer is disclosed. The spectrometer essentially includes an optical unit and an electronic recording unit. The optical unit includes a pair of thermoelectrically-cooled detectors, for detecting total radiance and selected radiance projected through a circular variable filter wheel, and is capable of operating to provide spectral data in the range 0.4 to 2.5 micrometers without requiring coventional substitution of filter elements. The electronic recording unit includes power supplies, amplifiers, and digital recording electronics designed to permit recordation of data on tape casettes. Both the optical unit and electronic recording unit are packaged to be manually portable

    Optical studies in the holographic ground station

    Get PDF
    The Holographic Group System (HGS) Facility in rooms 22 & 123, Building 4708 has been developed to provide for ground based research in determining pre-flight parameters and analyzing the results from space experiments. The University of Alabama, Huntsville (UAH) has researched the analysis aspects of the HGS and reports their findings here. Some of the results presented here also occur in the Facility Operating Procedure (FOP), which contains instructions for power up, operation, and powerdown of the Fluid Experiment System (FES) Holographic Ground System (HGS) Test Facility for the purpose of optically recording fluid and/or crystal behavior in a test article during ground based testing through the construction of holograms and recording of videotape. The alignment of the optical bench components, holographic reconstruction and and microscopy alignment sections were also included in the document for continuity even though they are not used until after optical recording of the test article) setup of support subsystems and the Automated Holography System (AHS) computer. The HGS provides optical recording and monitoring during GCEL runs or development testing of potential FES flight hardware or software. This recording/monitoring can be via 70mm holographic film, standard videotape, or digitized images on computer disk. All optical bench functions necessary to construct holograms will be under the control of the AHS personal computer (PC). These include type of exposure, time intervals between exposures, exposure length, film frame identification, film advancement, film platen evacuation and repressurization, light source diffuser introduction, and control of realtime video monitoring. The completed sequence of hologram types (single exposure, diffuse double exposure, etc.) and their time of occurrence can be displayed, printed, or stored on floppy disk posttest for the user

    Dynamic holographic storage in lithium niobate

    Get PDF
    A program was undertaken to improve the optical recording properties of LiNbO3 for holographic optical memory application. Iron, copper, and manganese doping were all found to increase the optical sensitivity of LiNbO3. Over two orders of magnitude improvement was obtained, resulting in an exposure of 366 wirojoule/sq mm to obtain 1% efficiency in LiNbO3:Fe. High :Fe. High quality pictorial information was stored in 1mm diameter holograms
    corecore