1,610 research outputs found

    Outdoor navigation of mobile robots

    Get PDF
    AGVs in the manufacturing industry currently constitute the largest application area for mobile robots. Other applications have been gradually emerging, including various transporting tasks in demanding environments, such as mines or harbours. Most of the new potential applications require a free-ranging navigation system, which means that the path of a robot is no longer bound to follow a buried inductive cable. Moreover, changing the route of a robot or taking a new working area into use must be as effective as possible. These requirements set new challenges for the navigation systems of mobile robots. One of the basic methods of building a free ranging navigation system is to combine dead reckoning navigation with the detection of beacons at known locations. This approach is the backbone of the navigation systems in this study. The study describes research and development work in the area of mobile robotics including the applications in forestry, agriculture, mining, and transportation in a factory yard. The focus is on describing navigation sensors and methods for position and heading estimation by fusing dead reckoning and beacon detection information. A Kalman filter is typically used here for sensor fusion. Both cases of using either artificial or natural beacons have been covered. Artificial beacons used in the research and development projects include specially designed flat objects to be detected using a camera as the detection sensor, GPS satellite positioning system, and passive transponders buried in the ground along the route of a robot. The walls in a mine tunnel have been used as natural beacons. In this case, special attention has been paid to map building and using the map for positioning. The main contribution of the study is in describing the structure of a working navigation system, including positioning and position control. The navigation system for mining application, in particular, contains some unique features that provide an easy-to-use procedure for taking new production areas into use and making it possible to drive a heavy mining machine autonomously at speed comparable to an experienced human driver.reviewe

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    Lunar Polar Coring Lander

    Get PDF
    Plans to build a lunar base are presently being studied with a number of considerations. One of the most important considerations is qualifying the presence of water on the Moon. The existence of water on the Moon implies that future lunar settlements may be able to use this resource to produce things such as drinking water and rocket fuel. Due to the very high cost of transporting these materials to the Moon, in situ production could save billions of dollars in operating costs of the lunar base. Scientists have suggested that the polar regions of the Moon may contain some amounts of water ice in the regolith. Six possible mission scenarios are suggested which would allow lunar polar soil samples to be collected for analysis. The options presented are: remote sensing satellite, two unmanned robotic lunar coring missions (one is a sample return and one is a data return only), two combined manned and robotic polar coring missions, and one fully manned core retrieval mission. One of the combined manned and robotic missions has been singled out for detailed analysis. This mission proposes sending at least three unmanned robotic landers to the lunar pole to take core samples as deep as 15 meters. Upon successful completion of the coring operations, a manned mission would be sent to retrieve the samples and perform extensive experiments of the polar region. Man's first step in returning to the Moon is recommended to investigate the issue of lunar polar water. The potential benefits of lunar water more than warrant sending either astronauts, robots or both to the Moon before any permanent facility is constructed

    SPHERES Reconfigurable Framework and Control System Design for Autonomous Assembly

    Get PDF
    Reconfigurable control system design is a key component for enabling autonomous on-orbit assembly. Current research on reconfigurable control systems focuses on adapting to failures. However, for assembly scenarios, the reconfiguration is necessitated by changing mass and stiffness properties. This paper provides a brief description of existing reconfigurable control system technology and develops a framework to incorporate reconfiguration into an existing baseline system to account for mass property variations. The reconfigurable control system framework has been developed and implemented using the SPHERES (Synchronized Position Hold Engage Reorient Experimental Satellites) testbed as the baseline system. The framework highlights the elements that need to be updated, introduces a variable p that captures the configuration, and details the updates necessary in the key algorithms to calculate the model online using p. Results are presented from the implementation on the SPHERES, focusing on the reconfigurable estimator. Plans are presented for an integrated assembly test that demonstrates the maintenance of stability, fuel efficiency, and accuracy throughout configuration changes that occur during assembly

    TRC research products: Components for service robots

    Get PDF
    Transitions Research Corporation has developed a variety of technologies to accomplish its central mission: the creation of commercially viable robots for the service industry. Collectively, these technologies comprise the TRC 'robot tool kit.' The company started by developing a robot base that serves as a foundation for mobile robot research and development, both within TRC and at customer sites around the world. A diverse collection of sensing techniques evolved more recently, many of which have been made available to the international mobile robot research community as commercial products. These 'tool-kit' research products are described in this paper. The largest component of TRC's commercial operation is a product called HelpMate for material transport and delivery in health care institutions
    corecore