2,960 research outputs found

    Arithmetic on a Distributed-Memory Quantum Multicomputer

    Full text link
    We evaluate the performance of quantum arithmetic algorithms run on a distributed quantum computer (a quantum multicomputer). We vary the node capacity and I/O capabilities, and the network topology. The tradeoff of choosing between gates executed remotely, through ``teleported gates'' on entangled pairs of qubits (telegate), versus exchanging the relevant qubits via quantum teleportation, then executing the algorithm using local gates (teledata), is examined. We show that the teledata approach performs better, and that carry-ripple adders perform well when the teleportation block is decomposed so that the key quantum operations can be parallelized. A node size of only a few logical qubits performs adequately provided that the nodes have two transceiver qubits. A linear network topology performs acceptably for a broad range of system sizes and performance parameters. We therefore recommend pursuing small, high-I/O bandwidth nodes and a simple network. Such a machine will run Shor's algorithm for factoring large numbers efficiently.Comment: 24 pages, 10 figures, ACM transactions format. Extended version of Int. Symp. on Comp. Architecture (ISCA) paper; v2, correct one circuit error, numerous small changes for clarity, add reference

    Optimization of an avionic VCSEL-based optical link through large signal characterization

    Get PDF
    Optical communication systems have been widely preferred for network communications, especially for Datacoms Local Area Network links. The optical technology is an excellent candidate for on-board systems due to the potential weight saving and EMC immunity. According to the short length of the link and a cost saving, Vertical Cavity Surface Emitting Laser (VCSEL) and multimode fiber are the best solution for gigabit systems. In this context, we propose a modeling of 850nm VCSEL based on the rate equations analysis to predict the optical interconnect performances (jitter, bit error rate). Our aim is to define the operation conditions of VCSEL under large signal modulation in order to maximize the Extinction Ratio (current IOFF below threshold) without affecting link performances. The VCSEL model is developed to provide large signal modulation response. Biasing below threshold causes stochastic turn-on delay. Fluctuations of this delay occur, due to the spontaneous emission. This leads to additional turn-on jitter. These stochastic effects are included in the model by adding the Langevin photon and electron noise sources. The VCSEL behavior under high-speed modulation is studied to observe the transient response and extract the resonance frequency, overshoot and turn-on delay. The associated jitter is evaluated with the standard deviation of the turn-on delay probability density function. Simulations of stochastic and deterministic jitters are realized under different conditions of modulation (OFF current levels). Comparing simulations with measurement results carried out on VCSEL and a short haul gigabit link validates the approach

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    Hong-Ou-Mandel interference of polarization qubits stored in independent room-temperature quantum memories

    Full text link
    First generation quantum repeater networks require independent quantum memories capable of storing and retrieving indistinguishable photons to perform quantum-interference-mediated high-repetition entanglement swapping operations. The ability to perform these coherent operations at room temperature is of prime importance in order to realize large scalable quantum networks. Here we address these significant challenges by observing Hong-Ou-Mandel (HOM) interference between indistinguishable photons carrying polarization qubits retrieved from two independent room-temperature quantum memories. Our elementary quantum network configuration includes: (i) two independent sources generating polarization-encoded qubits; (ii) two atomic-vapor dual-rail quantum memories; and (iii) a HOM interference node. We obtained interference visibilities after quantum memory retrieval of V=(41.9±2.0)%\rm \boldsymbol{V=(41.9\pm2.0)\%} for few-photon level inputs and V=(25.9±2.5)%\rm \boldsymbol{V=(25.9\pm2.5)\%} for single-photon level inputs. Our prototype network lays the groundwork for future large-scale memory-assisted quantum cryptography and distributed quantum networks.Comment: 12 pages, 6 figure
    • …
    corecore