1,354 research outputs found

    Context-aware Synthesis for Video Frame Interpolation

    Get PDF
    Video frame interpolation algorithms typically estimate optical flow or its variations and then use it to guide the synthesis of an intermediate frame between two consecutive original frames. To handle challenges like occlusion, bidirectional flow between the two input frames is often estimated and used to warp and blend the input frames. However, how to effectively blend the two warped frames still remains a challenging problem. This paper presents a context-aware synthesis approach that warps not only the input frames but also their pixel-wise contextual information and uses them to interpolate a high-quality intermediate frame. Specifically, we first use a pre-trained neural network to extract per-pixel contextual information for input frames. We then employ a state-of-the-art optical flow algorithm to estimate bidirectional flow between them and pre-warp both input frames and their context maps. Finally, unlike common approaches that blend the pre-warped frames, our method feeds them and their context maps to a video frame synthesis neural network to produce the interpolated frame in a context-aware fashion. Our neural network is fully convolutional and is trained end to end. Our experiments show that our method can handle challenging scenarios such as occlusion and large motion and outperforms representative state-of-the-art approaches.Comment: CVPR 2018, http://graphics.cs.pdx.edu/project/ctxsy

    Video Frame Interpolation via Adaptive Separable Convolution

    Get PDF
    Standard video frame interpolation methods first estimate optical flow between input frames and then synthesize an intermediate frame guided by motion. Recent approaches merge these two steps into a single convolution process by convolving input frames with spatially adaptive kernels that account for motion and re-sampling simultaneously. These methods require large kernels to handle large motion, which limits the number of pixels whose kernels can be estimated at once due to the large memory demand. To address this problem, this paper formulates frame interpolation as local separable convolution over input frames using pairs of 1D kernels. Compared to regular 2D kernels, the 1D kernels require significantly fewer parameters to be estimated. Our method develops a deep fully convolutional neural network that takes two input frames and estimates pairs of 1D kernels for all pixels simultaneously. Since our method is able to estimate kernels and synthesizes the whole video frame at once, it allows for the incorporation of perceptual loss to train the neural network to produce visually pleasing frames. This deep neural network is trained end-to-end using widely available video data without any human annotation. Both qualitative and quantitative experiments show that our method provides a practical solution to high-quality video frame interpolation.Comment: ICCV 2017, http://graphics.cs.pdx.edu/project/sepconv

    Two-Stream Action Recognition-Oriented Video Super-Resolution

    Full text link
    We study the video super-resolution (SR) problem for facilitating video analytics tasks, e.g. action recognition, instead of for visual quality. The popular action recognition methods based on convolutional networks, exemplified by two-stream networks, are not directly applicable on video of low spatial resolution. This can be remedied by performing video SR prior to recognition, which motivates us to improve the SR procedure for recognition accuracy. Tailored for two-stream action recognition networks, we propose two video SR methods for the spatial and temporal streams respectively. On the one hand, we observe that regions with action are more important to recognition, and we propose an optical-flow guided weighted mean-squared-error loss for our spatial-oriented SR (SoSR) network to emphasize the reconstruction of moving objects. On the other hand, we observe that existing video SR methods incur temporal discontinuity between frames, which also worsens the recognition accuracy, and we propose a siamese network for our temporal-oriented SR (ToSR) training that emphasizes the temporal continuity between consecutive frames. We perform experiments using two state-of-the-art action recognition networks and two well-known datasets--UCF101 and HMDB51. Results demonstrate the effectiveness of our proposed SoSR and ToSR in improving recognition accuracy.Comment: Accepted to ICCV 2019. Code: https://github.com/AlanZhang1995/TwoStreamS

    Deep Video Color Propagation

    Full text link
    Traditional approaches for color propagation in videos rely on some form of matching between consecutive video frames. Using appearance descriptors, colors are then propagated both spatially and temporally. These methods, however, are computationally expensive and do not take advantage of semantic information of the scene. In this work we propose a deep learning framework for color propagation that combines a local strategy, to propagate colors frame-by-frame ensuring temporal stability, and a global strategy, using semantics for color propagation within a longer range. Our evaluation shows the superiority of our strategy over existing video and image color propagation methods as well as neural photo-realistic style transfer approaches.Comment: BMVC 201

    Motion Offset for Blur Modeling

    Get PDF
    Motion blur caused by the relative movement between the camera and the subject is often an undesirable degradation of the image quality. In most conventional deblurring methods, a blur kernel is estimated for image deconvolution. Due to the ill-posed nature, predefined priors are proposed to suppress the ill-posedness. However, these predefined priors can only handle some specific situations. In order to achieve a better deblurring performance on dynamic scene, deep-learning based methods are proposed to learn a mapping function that restore the sharp image from a blurry image. The blur may be implicitly modelled in feature extraction module. However, the blur modelled from the paired dataset cannot be well generalized to some real-world scenes. To summary, an accurate and dynamic blur model that more closely approximates real-world blur is needed. By revisiting the principle of camera exposure, we can model the blur with the displacements between sharp pixels and the exposed pixel, namely motion offsets. Given specific physical constraints, motion offsets are able to form different exposure trajectories (i.e. linear, quadratic). Compare to conventional blur kernel, our proposed motion offsets are a more rigorous approximation for real-world blur, since they can constitute a non-linear and non-uniform motion field. Through learning from dynamic scene dataset, an accurate and spatial-variant motion offset field is obtained. With accurate motion information and a compact blur modeling method, we explore the ways of utilizing motion information to facilitate multiple blur-related tasks. By introducing recovered motion offsets, we build up a motion-aware and spatial-variant convolution. For extracting a video clip from a blurry image, motion offsets can provide an explicit (non-)linear motion trajectory for interpolating. We also work towards a better image deblurring performance in real-world scenarios by improving the generalization ability of the deblurring model

    Duality based optical flow algorithms with applications

    Get PDF
    We consider the popular TV-L1 optical flow formulation, and the so-called dual-ity based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider di↵erent definitions of total variation regulariza-tion, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X-ray images of di↵erent hands, taken using di↵erent imaging devices are registered using a TV-L1 optical flow algo-rithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D chromatograms, where registration only have to be done in one of the two dimensions, resulting in a vector valued registration problem with values having several hundred dimensions. We propose a nove
    corecore