36,718 research outputs found

    Optical Flow on Moving Manifolds

    Full text link
    Optical flow is a powerful tool for the study and analysis of motion in a sequence of images. In this article we study a Horn-Schunck type spatio-temporal regularization functional for image sequences that have a non-Euclidean, time varying image domain. To that end we construct a Riemannian metric that describes the deformation and structure of this evolving surface. The resulting functional can be seen as natural geometric generalization of previous work by Weickert and Schn\"orr (2001) and Lef\`evre and Baillet (2008) for static image domains. In this work we show the existence and wellposedness of the corresponding optical flow problem and derive necessary and sufficient optimality conditions. We demonstrate the functionality of our approach in a series of experiments using both synthetic and real data.Comment: 26 pages, 6 figure

    On using gait to enhance frontal face extraction

    No full text
    Visual surveillance finds increasing deployment formonitoring urban environments. Operators need to be able to determine identity from surveillance images and often use face recognition for this purpose. In surveillance environments, it is necessary to handle pose variation of the human head, low frame rate, and low resolution input images. We describe the first use of gait to enable face acquisition and recognition, by analysis of 3-D head motion and gait trajectory, with super-resolution analysis. We use region- and distance-based refinement of head pose estimation. We develop a direct mapping to relate the 2-D image with a 3-D model. In gait trajectory analysis, we model the looming effect so as to obtain the correct face region. Based on head position and the gait trajectory, we can reconstruct high-quality frontal face images which are demonstrated to be suitable for face recognition. The contributions of this research include the construction of a 3-D model for pose estimation from planar imagery and the first use of gait information to enhance the face extraction process allowing for deployment in surveillance scenario

    Real-World Repetition Estimation by Div, Grad and Curl

    Get PDF
    We consider the problem of estimating repetition in video, such as performing push-ups, cutting a melon or playing violin. Existing work shows good results under the assumption of static and stationary periodicity. As realistic video is rarely perfectly static and stationary, the often preferred Fourier-based measurements is inapt. Instead, we adopt the wavelet transform to better handle non-static and non-stationary video dynamics. From the flow field and its differentials, we derive three fundamental motion types and three motion continuities of intrinsic periodicity in 3D. On top of this, the 2D perception of 3D periodicity considers two extreme viewpoints. What follows are 18 fundamental cases of recurrent perception in 2D. In practice, to deal with the variety of repetitive appearance, our theory implies measuring time-varying flow and its differentials (gradient, divergence and curl) over segmented foreground motion. For experiments, we introduce the new QUVA Repetition dataset, reflecting reality by including non-static and non-stationary videos. On the task of counting repetitions in video, we obtain favorable results compared to a deep learning alternative
    corecore