1,739 research outputs found

    Accelerating Neural Network Inference with Processing-in-DRAM: From the Edge to the Cloud

    Full text link
    Neural networks (NNs) are growing in importance and complexity. A neural network's performance (and energy efficiency) can be bound either by computation or memory resources. The processing-in-memory (PIM) paradigm, where computation is placed near or within memory arrays, is a viable solution to accelerate memory-bound NNs. However, PIM architectures vary in form, where different PIM approaches lead to different trade-offs. Our goal is to analyze, discuss, and contrast DRAM-based PIM architectures for NN performance and energy efficiency. To do so, we analyze three state-of-the-art PIM architectures: (1) UPMEM, which integrates processors and DRAM arrays into a single 2D chip; (2) Mensa, a 3D-stack-based PIM architecture tailored for edge devices; and (3) SIMDRAM, which uses the analog principles of DRAM to execute bit-serial operations. Our analysis reveals that PIM greatly benefits memory-bound NNs: (1) UPMEM provides 23x the performance of a high-end GPU when the GPU requires memory oversubscription for a general matrix-vector multiplication kernel; (2) Mensa improves energy efficiency and throughput by 3.0x and 3.1x over the Google Edge TPU for 24 Google edge NN models; and (3) SIMDRAM outperforms a CPU/GPU by 16.7x/1.4x for three binary NNs. We conclude that the ideal PIM architecture for NN models depends on a model's distinct attributes, due to the inherent architectural design choices.Comment: This is an extended and updated version of a paper published in IEEE Micro, pp. 1-14, 29 Aug. 2022. arXiv admin note: text overlap with arXiv:2109.1432

    Benchmarking a New Paradigm: An Experimental Analysis of a Real Processing-in-Memory Architecture

    Full text link
    Many modern workloads, such as neural networks, databases, and graph processing, are fundamentally memory-bound. For such workloads, the data movement between main memory and CPU cores imposes a significant overhead in terms of both latency and energy. A major reason is that this communication happens through a narrow bus with high latency and limited bandwidth, and the low data reuse in memory-bound workloads is insufficient to amortize the cost of main memory access. Fundamentally addressing this data movement bottleneck requires a paradigm where the memory system assumes an active role in computing by integrating processing capabilities. This paradigm is known as processing-in-memory (PIM). Recent research explores different forms of PIM architectures, motivated by the emergence of new 3D-stacked memory technologies that integrate memory with a logic layer where processing elements can be easily placed. Past works evaluate these architectures in simulation or, at best, with simplified hardware prototypes. In contrast, the UPMEM company has designed and manufactured the first publicly-available real-world PIM architecture. This paper provides the first comprehensive analysis of the first publicly-available real-world PIM architecture. We make two key contributions. First, we conduct an experimental characterization of the UPMEM-based PIM system using microbenchmarks to assess various architecture limits such as compute throughput and memory bandwidth, yielding new insights. Second, we present PrIM, a benchmark suite of 16 workloads from different application domains (e.g., linear algebra, databases, graph processing, neural networks, bioinformatics).Comment: Our open source software is available at https://github.com/CMU-SAFARI/prim-benchmark

    A survey of near-data processing architectures for neural networks

    Get PDF
    Data-intensive workloads and applications, such as machine learning (ML), are fundamentally limited by traditional computing systems based on the von-Neumann architecture. As data movement operations and energy consumption become key bottlenecks in the design of computing systems, the interest in unconventional approaches such as Near-Data Processing (NDP), machine learning, and especially neural network (NN)-based accelerators has grown significantly. Emerging memory technologies, such as ReRAM and 3D-stacked, are promising for efficiently architecting NDP-based accelerators for NN due to their capabilities to work as both high-density/low-energy storage and in/near-memory computation/search engine. In this paper, we present a survey of techniques for designing NDP architectures for NN. By classifying the techniques based on the memory technology employed, we underscore their similarities and differences. Finally, we discuss open challenges and future perspectives that need to be explored in order to improve and extend the adoption of NDP architectures for future computing platforms. This paper will be valuable for computer architects, chip designers, and researchers in the area of machine learning.This work has been supported by the CoCoUnit ERC Advanced Grant of the EU’s Horizon 2020 program (grant No 833057), the Spanish State Research Agency (MCIN/AEI) under grant PID2020-113172RB-I00, and the ICREA Academia program.Peer ReviewedPostprint (published version

    Memory-Centric Computing

    Full text link
    Memory-centric computing aims to enable computation capability in and near all places where data is generated and stored. As such, it can greatly reduce the large negative performance and energy impact of data access and data movement, by fundamentally avoiding data movement and reducing data access latency & energy. Many recent studies show that memory-centric computing can greatly improve system performance and energy efficiency. Major industrial vendors and startup companies have also recently introduced memory chips that have sophisticated computation capabilities. This talk describes promising ongoing research and development efforts in memory-centric computing. We classify such efforts into two major fundamental categories: 1) processing using memory, which exploits analog operational properties of memory structures to perform massively-parallel operations in memory, and 2) processing near memory, which integrates processing capability in memory controllers, the logic layer of 3D-stacked memory technologies, or memory chips to enable high-bandwidth and low-latency memory access to near-memory logic. We show both types of architectures (and their combination) can enable orders of magnitude improvements in performance and energy consumption of many important workloads, such as graph analytics, databases, machine learning, video processing, climate modeling, genome analysis. We discuss adoption challenges for the memory-centric computing paradigm and conclude with some research & development opportunities.Comment: To appear as an invited special session paper at DAC 202
    • …
    corecore