779 research outputs found

    A Novel User Pairing Scheme for Functional Decode-and-Forward Multi-way Relay Network

    Full text link
    In this paper, we consider a functional decode and forward (FDF) multi-way relay network (MWRN) where a common user facilitates each user in the network to obtain messages from all other users. We propose a novel user pairing scheme, which is based on the principle of selecting a common user with the best average channel gain. This allows the user with the best channel conditions to contribute to the overall system performance. Assuming lattice code based transmissions, we derive upper bounds on the average common rate and the average sum rate with the proposed pairing scheme. Considering M-ary quadrature amplitude modulation with square constellation as a special case of lattice code transmission, we derive asymptotic average symbol error rate (SER) of the MWRN. We show that in terms of the achievable rates, the proposed pairing scheme outperforms the existing pairing schemes under a wide range of channel scenarios. The proposed pairing scheme also has lower average SER compared to existing schemes. We show that overall, the MWRN performance with the proposed pairing scheme is more robust, compared to existing pairing schemes, especially under worst case channel conditions when majority of users have poor average channel gains.Comment: 30 pages, 6 figures, submitted for journal publicatio

    SourceSync: A Distributed Wireless Architecture for Exploiting Sender Diversity

    Get PDF
    Diversity is an intrinsic property of wireless networks. Recent years have witnessed the emergence of many distributed protocols like ExOR, MORE, SOAR, SOFT, and MIXIT that exploit receiver diversity in 802.11-like networks. In contrast, the dual of receiver diversity, sender diversity, has remained largely elusive to such networks. This paper presents SourceSync, a distributed architecture for harnessing sender diversity. SourceSync enables concurrent senders to synchronize their transmissions to symbol boundaries, and cooperate to forward packets at higher data rates than they could have achieved by transmitting separately. The paper shows that SourceSync improves the performance of opportunistic routing protocols. Specifically, SourceSync allows all nodes that overhear a packet in a wireless mesh to simultaneously transmit it to their nexthops, in contrast to existing opportunistic routing protocols that are forced to pick a single forwarder from among the overhearing nodes. Such simultaneous transmission reduces bit errors and improves throughput. The paper also shows that SourceSync increases the throughput of 802.11 last hop diversity protocols by allowing multiple APs to transmit simultaneously to a client, thereby harnessing sender diversity. We have implemented SourceSync on the FPGA of an 802.11-like radio platform. We have also evaluated our system in an indoor wireless testbed, empirically showing its benefits.National Science Foundation (U.S.) (Award CNS-0831660)United States. Defense Advanced Research Projects Agency. Information Theory for Mobile Ad-Hoc Networks Progra

    The Degrees-of-Freedom of Multi-way Device-to-Device Communications is Limited by 2

    Full text link
    A 3-user device-to-device (D2D) communications scenario is studied where each user wants to send and receive a message from each other user. This scenario resembles a 3-way communication channel. The capacity of this channel is unknown in general. In this paper, a sum-capacity upper bound that characterizes the degrees-of-freedom of the channel is derived by using genie-aided arguments. It is further shown that the derived upper bound is achievable within a gap of 2 bits, thus leading to an approximate sum-capacity characterization for the 3-way channel. As a by-product, interesting analogies between multi-way communications and multi-way relay communications are concluded.Comment: 5 pages, ISIT 201

    Analysis and design of physical-layer network coding for relay networks

    Full text link
    Physical-layer network coding (PNC) is a technique to make use of interference in wireless transmissions to boost the system throughput. In a PNC employed relay network, the relay node directly recovers and transmits a linear combination of its received messages in the physical layer. It has been shown that PNC can achieve near information-capacity rates. PNC is a new information exchange scheme introduced in wireless transmission. In practice, transmitters and receivers need to be designed and optimized, to achieve fast and reliable information exchange. Thus, we would like to ask: How to design the PNC schemes to achieve fast and reliable information exchange? In this thesis, we address this question from the following works: Firstly, we studied channel-uncoded PNC in two-way relay fading channels with QPSK modulation. The computation error probability for computing network coded messages at the relay is derived. We then optimized the network coding functions at the relay to improve the error rate performance. We then worked on channel coded PNC. The codes we studied include classical binary code, modern codes, and lattice codes. We analyzed the distance spectra of channel-coded PNC schemes with classical binary codes, to derive upper bounds for error rates of computing network coded messages at the relay. We designed and optimized irregular repeat-accumulate coded PNC. We modified the conventional extrinsic information transfer chart in the optimization process to suit the superimposed signal received at the relay. We analyzed and designed Eisenstein integer based lattice coded PNC in multi-way relay fading channels, to derive error rate performance bounds of computing network coded messages. Finally we extended our work to multi-way relay channels. We proposed a opportunistic transmission scheme for a pair-wise transmission PNC in a single-input single-output multi-way relay channel, to improve the sum-rate at the relay. The error performance of computing network coded messages at the relay is also improved. We optimized the uplink/downlink channel usage for multi-input multi-output multi-way relay channels with PNC to maximize the degrees of freedom capacity. We also showed that the system sum-rate can be further improved by a proposed iterative optimization algorithm

    Opportunistic Routing in Multihop Wireless Networks: Capacity, Energy Efficiency, and Security

    Get PDF
    Opportunistic routing (OR) takes advantages of the spatial diversity and broadcast nature of wireless networks to combat the time-varying links by involving multiple neighboring nodes (forwarding candidates) for each packet relay. This dissertation studies the properties, energy efficiency, capacity, throughput, protocol design and security issues about OR in multihop wireless networks. Firstly, we study geographic opportunistic routing (GOR), a variant of OR which makes use of nodes\u27 location information. We identify and prove three important properties of GOR. The first one is on prioritizing the forwarding candidates according to their geographic advancements to the destination. The second one is on choosing the forwarding candidates based on their advancements and link qualities in order to maximize the expected packet advancement (EPA) with different number of forwarding candidates. The third one is on the concavity of the maximum EPA in respect to the number of forwarding candidates. We further propose a local metric, EPA per unit energy consumption, to tradeoff the routing performance and energy efficiency for GOR. Leveraging the proved properties of GOR, we propose two efficient algorithms to select and prioritize forwarding candidates to maximize the local metric. Secondly, capacity is a fundamental issue in multihop wireless networks. We propose a framework to compute the end-to-end throughput bound or capacity of OR in single/multirate systems given OR strategies (candidate selection and prioritization). Taking into account wireless interference and unique properties of OR, we propose a new method of constructing transmission conflict graphs, and we introduce the concept of concurrent transmission sets to allow the proper formulation of the maximum end-to-end throughput problem as a maximum-flow linear programming problem subject to the transmission conflict constraints. We also propose two OR metrics: expected medium time (EMT) and expected advancement rate (EAR), and the corresponding distributed and local rate and candidate set selection schemes, the Least Medium Time OR (LMTOR) and the Multirate Geographic OR (MGOR). We further extend our framework to compute the capacity of OR in multi-radio multi-channel systems with dynamic OR strategies. We study the necessary and sufficient conditions for the schedulability of a traffic demand vector associated with a transmitter to its forwarding candidates in a concurrent transmission set. We further propose an LP approach and a heuristic algorithm to obtain an opportunistic forwarding strategy scheduling that satisfies a traffic demand vector. Our methodology can be used to calculate the end-to-end throughput bound of OR in multi-radio/channel/rate multihop wireless networks, as well as to study the OR behaviors (such as candidate selection and prioritization) under different network configurations. Thirdly, protocol design of OR in a contention-based medium access environment is an important and challenging issue. In order to avoid duplication, we should ensure only the best receiver of each packet to forward it in an efficient way. We investigate the existing candidate coordination schemes and propose a fast slotted acknowledgment (FSA) to further improve the performance of OR by using a single ACK to coordinate the forwarding candidates with the help of the channel sensing technique. Furthermore, we study the throughput of GOR in multi-rate and single-rate systems. We introduce a framework to analyze the one-hop throughput of GOR, and provide a deeper insight on the trade-off between the benefit (packet advancement, bandwidth, and transmission reliability) and cost (medium time delay) associated with the node collaboration. We propose a local metric named expected one-hop throughput (EOT) to balance the benefit and cost. Finally, packet reception ratio (PRR) has been widely used as an indicator of the link quality in multihop wireless networks. Many routing protocols including OR in wireless networks depend on the PRR information to make routing decision. Providing accurate link quality measurement (LQM) is essential to ensure the right operation of these routing protocols. However, the existing LQM mechanisms are subject to malicious attacks, thus can not guarantee to provide correct link quality information. We analyze the security vulnerabilities in the existing link quality measurement (LQM) mechanisms and propose an efficient broadcast-based secure LQM (SLQM) mechanism, which prevents the malicious attackers from reporting a higher PRR than the actual one. We analyze the security strength and the cost of the proposed mechanism
    • …
    corecore