5 research outputs found

    Opportunistic Scheduling and Beamforming for MIMO-OFDMA Downlink Systems with Reduced Feedback

    Full text link
    Opportunistic scheduling and beamforming schemes with reduced feedback are proposed for MIMO-OFDMA downlink systems. Unlike the conventional beamforming schemes in which beamforming is implemented solely by the base station (BS) in a per-subcarrier fashion, the proposed schemes take advantages of a novel channel decomposition technique to perform beamforming jointly by the BS and the mobile terminal (MT). The resulting beamforming schemes allow the BS to employ only {\em one} beamforming matrix (BFM) to form beams for {\em all} subcarriers while each MT completes the beamforming task for each subcarrier locally. Consequently, for a MIMO-OFDMA system with QQ subcarriers, the proposed opportunistic scheduling and beamforming schemes require only one BFM index and QQ supportable throughputs to be returned from each MT to the BS, in contrast to QQ BFM indices and QQ supportable throughputs required by the conventional schemes. The advantage of the proposed schemes becomes more evident when a further feedback reduction is achieved by grouping adjacent subcarriers into exclusive clusters and returning only cluster information from each MT. Theoretical analysis and computer simulation confirm the effectiveness of the proposed reduced-feedback schemes.Comment: Proceedings of the 2008 IEEE International Conference on Communications, Beijing, May 19-23, 200

    Reducing feedback requirements of the multiple weight opportunistic beamforming scheme via selective multiuser diversity

    Get PDF

    Adaptive Phase Rolling for Opportunistic Beamforming in OFDMA Systems with a Small Number of Users

    Get PDF
    The performance of opportunistic beamforming might be degraded if the number of users is small. This paper proposes an adaptive opportunistic beamforming technique for orthogonal frequency division multiple access systems, which can produce good results even with a small number of users. This paper also proposes a modified proportional fairness scheduling algorithm, which can further improve the performance of the proposed opportunistic beamforming technique
    corecore