2 research outputs found

    Secret-Key-Aided Scheme for Securing Untrusted DF Relaying Networks

    Full text link
    This paper proposes a new scheme to secure the transmissions in an untrusted decode-and-forward (DF) relaying network. A legitimate source node, Alice, sends her data to a legitimate destination node, Bob, with the aid of an untrusted DF relay node, Charlie. To secure the transmissions from Charlie during relaying time slots, each data codeword is secured using a secret-key codeword that has been previously shared between Alice and Bob during the perfectly secured time slots (i.e., when the channel secrecy rate is positive). The secret-key bits exchanged between Alice and Bob are stored in a finite-length buffer and are used to secure data transmission whenever needed. We model the secret-key buffer as a queueing system and analyze its Markov chain. Our numerical results show the gains of our proposed scheme relative to benchmarks. Moreover, the proposed scheme achieves an upper bound on the secure throughput

    Secure Communication Via a Wireless Energy Harvesting Untrusted Relay

    Full text link
    The broadcast nature of the wireless medium allows unintended users to eavesdrop the confidential information transmission. In this regard, we investigate the problem of secure communication between a source and a destination via a wireless energy harvesting untrusted node which acts as a helper to relay the information; however, the source and destination nodes wish to keep the information confidential from the relay node. To realize the positive secrecy rate, we use destination-assisted jamming. Being an energy-starved node, the untrusted relay harvests energy from the received radio frequency signals, which include the source's information signal and the destination's jamming signal. Thus, we utilize the jamming signal efficiently by leveraging it as a useful energy source. At the relay, to enable energy harvesting and information processing, we adopt power splitting (PS) and time switching (TS) policies. To evaluate the secrecy performance of this proposed scenario, we derive analytical expressions for two important metrics, viz., the secrecy outage probability and the ergodic secrecy rate. The numerical analysis reveals the design insights into the effects of different system parameters like power splitting ratio, energy harvesting time, target secrecy rate, transmit signal-to-noise ratio (SNR), relay location, and energy conversion efficiency factor, on the secrecy performance. Specifically, the PS policy achieves better optimal secrecy outage probability and optimal ergodic secrecy rate than that of the TS policy at higher target secrecy rate and transmit SNR, respectively.Comment: The paper has been submitted for possible journal publication. Revised versio
    corecore