2,362 research outputs found

    A GPU-accelerated Branch-and-Bound Algorithm for the Flow-Shop Scheduling Problem

    Get PDF
    Branch-and-Bound (B&B) algorithms are time intensive tree-based exploration methods for solving to optimality combinatorial optimization problems. In this paper, we investigate the use of GPU computing as a major complementary way to speed up those methods. The focus is put on the bounding mechanism of B&B algorithms, which is the most time consuming part of their exploration process. We propose a parallel B&B algorithm based on a GPU-accelerated bounding model. The proposed approach concentrate on optimizing data access management to further improve the performance of the bounding mechanism which uses large and intermediate data sets that do not completely fit in GPU memory. Extensive experiments of the contribution have been carried out on well known FSP benchmarks using an Nvidia Tesla C2050 GPU card. We compared the obtained performances to a single and a multithreaded CPU-based execution. Accelerations up to x100 are achieved for large problem instances

    Reducing thread divergence in a GPU-accelerated branch-and-bound algorithm

    Get PDF
    International audienceIn this paper, we address the design and implementation of GPU-accelerated Branch-and-Bound algorithms (B&B) for solving Flow-shop scheduling optimization problems (FSP). Such applications are CPU-time consuming and highly irregular. On the other hand, GPUs are massively multi-threaded accelerators using the SIMD model at execution. A major issue which arises when executing on GPU a B&B applied to FSP is thread or branch divergence. Such divergence is caused by the lower bound function of FSP which contains many irregular loops and conditional instructions. Our challenge is therefore to revisit the design and implementation of B&B applied to FSP dealing with thread divergence. Extensive experiments of the proposed approach have been carried out on well-known FSP benchmarks using an Nvidia Tesla C2050 GPU card. Compared to a CPU-based execution, accelerations up to Ă—77.46 are achieved for large problem instances

    Accelerating moderately stiff chemical kinetics in reactive-flow simulations using GPUs

    Full text link
    The chemical kinetics ODEs arising from operator-split reactive-flow simulations were solved on GPUs using explicit integration algorithms. Nonstiff chemical kinetics of a hydrogen oxidation mechanism (9 species and 38 irreversible reactions) were computed using the explicit fifth-order Runge-Kutta-Cash-Karp method, and the GPU-accelerated version performed faster than single- and six-core CPU versions by factors of 126 and 25, respectively, for 524,288 ODEs. Moderately stiff kinetics, represented with mechanisms for hydrogen/carbon-monoxide (13 species and 54 irreversible reactions) and methane (53 species and 634 irreversible reactions) oxidation, were computed using the stabilized explicit second-order Runge-Kutta-Chebyshev (RKC) algorithm. The GPU-based RKC implementation demonstrated an increase in performance of nearly 59 and 10 times, for problem sizes consisting of 262,144 ODEs and larger, than the single- and six-core CPU-based RKC algorithms using the hydrogen/carbon-monoxide mechanism. With the methane mechanism, RKC-GPU performed more than 65 and 11 times faster, for problem sizes consisting of 131,072 ODEs and larger, than the single- and six-core RKC-CPU versions, and up to 57 times faster than the six-core CPU-based implicit VODE algorithm on 65,536 ODEs. In the presence of more severe stiffness, such as ethylene oxidation (111 species and 1566 irreversible reactions), RKC-GPU performed more than 17 times faster than RKC-CPU on six cores for 32,768 ODEs and larger, and at best 4.5 times faster than VODE on six CPU cores for 65,536 ODEs. With a larger time step size, RKC-GPU performed at best 2.5 times slower than six-core VODE for 8192 ODEs and larger. Therefore, the need for developing new strategies for integrating stiff chemistry on GPUs was discussed.Comment: 27 pages, LaTeX; corrected typos in Appendix equations A.10 and A.1
    • …
    corecore