7 research outputs found

    Operator scaling with specified marginals

    Full text link
    The completely positive maps, a generalization of the nonnegative matrices, are a well-studied class of maps from n×nn\times n matrices to m×mm\times m matrices. The existence of the operator analogues of doubly stochastic scalings of matrices is equivalent to a multitude of problems in computer science and mathematics, such rational identity testing in non-commuting variables, noncommutative rank of symbolic matrices, and a basic problem in invariant theory (Garg, Gurvits, Oliveira and Wigderson, FOCS, 2016). We study operator scaling with specified marginals, which is the operator analogue of scaling matrices to specified row and column sums. We characterize the operators which can be scaled to given marginals, much in the spirit of the Gurvits' algorithmic characterization of the operators that can be scaled to doubly stochastic (Gurvits, Journal of Computer and System Sciences, 2004). Our algorithm produces approximate scalings in time poly(n,m) whenever scalings exist. A central ingredient in our analysis is a reduction from the specified marginals setting to the doubly stochastic setting. Operator scaling with specified marginals arises in diverse areas of study such as the Brascamp-Lieb inequalities, communication complexity, eigenvalues of sums of Hermitian matrices, and quantum information theory. Some of the known theorems in these areas, several of which had no effective proof, are straightforward consequences of our characterization theorem. For instance, we obtain a simple algorithm to find, when they exist, a tuple of Hermitian matrices with given spectra whose sum has a given spectrum. We also prove new theorems such as a generalization of Forster's theorem (Forster, Journal of Computer and System Sciences, 2002) concerning radial isotropic position.Comment: 34 pages, 3 page appendi

    Efficient algorithms for tensor scaling, quantum marginals and moment polytopes

    Full text link
    We present a polynomial time algorithm to approximately scale tensors of any format to arbitrary prescribed marginals (whenever possible). This unifies and generalizes a sequence of past works on matrix, operator and tensor scaling. Our algorithm provides an efficient weak membership oracle for the associated moment polytopes, an important family of implicitly-defined convex polytopes with exponentially many facets and a wide range of applications. These include the entanglement polytopes from quantum information theory (in particular, we obtain an efficient solution to the notorious one-body quantum marginal problem) and the Kronecker polytopes from representation theory (which capture the asymptotic support of Kronecker coefficients). Our algorithm can be applied to succinct descriptions of the input tensor whenever the marginals can be efficiently computed, as in the important case of matrix product states or tensor-train decompositions, widely used in computational physics and numerical mathematics. We strengthen and generalize the alternating minimization approach of previous papers by introducing the theory of highest weight vectors from representation theory into the numerical optimization framework. We show that highest weight vectors are natural potential functions for scaling algorithms and prove new bounds on their evaluations to obtain polynomial-time convergence. Our techniques are general and we believe that they will be instrumental to obtain efficient algorithms for moment polytopes beyond the ones consider here, and more broadly, for other optimization problems possessing natural symmetries

    Interior-point methods on manifolds: theory and applications

    Full text link
    Interior-point methods offer a highly versatile framework for convex optimization that is effective in theory and practice. A key notion in their theory is that of a self-concordant barrier. We give a suitable generalization of self-concordance to Riemannian manifolds and show that it gives the same structural results and guarantees as in the Euclidean setting, in particular local quadratic convergence of Newton's method. We analyze a path-following method for optimizing compatible objectives over a convex domain for which one has a self-concordant barrier, and obtain the standard complexity guarantees as in the Euclidean setting. We provide general constructions of barriers, and show that on the space of positive-definite matrices and other symmetric spaces, the squared distance to a point is self-concordant. To demonstrate the versatility of our framework, we give algorithms with state-of-the-art complexity guarantees for the general class of scaling and non-commutative optimization problems, which have been of much recent interest, and we provide the first algorithms for efficiently finding high-precision solutions for computing minimal enclosing balls and geometric medians in nonpositive curvature.Comment: 85 pages. v2: Merged with independent work arXiv:2212.10981 by Hiroshi Hira

    Classical and quantum algorithms for scaling problems

    Get PDF
    This thesis is concerned with scaling problems, which have a plethora of connections to different areas of mathematics, physics and computer science. Although many structural aspects of these problems are understood by now, we only know how to solve them efficiently in special cases.We give new algorithms for non-commutative scaling problems with complexity guarantees that match the prior state of the art. To this end, we extend the well-known (self-concordance based) interior-point method (IPM) framework to Riemannian manifolds, motivated by its success in the commutative setting. Moreover, the IPM framework does not obviously suffer from the same obstructions to efficiency as previous methods. It also yields the first high-precision algorithms for other natural geometric problems in non-positive curvature.For the (commutative) problems of matrix scaling and balancing, we show that quantum algorithms can outperform the (already very efficient) state-of-the-art classical algorithms. Their time complexity can be sublinear in the input size; in certain parameter regimes they are also optimal, whereas in others we show no quantum speedup over the classical methods is possible. Along the way, we provide improvements over the long-standing state of the art for searching for all marked elements in a list, and computing the sum of a list of numbers.We identify a new application in the context of tensor networks for quantum many-body physics. We define a computable canonical form for uniform projected entangled pair states (as the solution to a scaling problem), circumventing previously known undecidability results. We also show, by characterizing the invariant polynomials, that the canonical form is determined by evaluating the tensor network contractions on networks of bounded size
    corecore