79 research outputs found

    A Hybrid Model to Extend Vehicular Intercommunication V2V through D2D Architecture

    Full text link
    In the recent years, many solutions for Vehicle to Vehicle (V2V) communication were proposed to overcome failure problems (also known as dead ends). This paper proposes a novel framework for V2V failure recovery using Device-to-Device (D2D) communications. Based on the unified Intelligent Transportation Systems (ITS) architecture, LTE-based D2D mechanisms can improve V2V dead ends failure recovery delays. This new paradigm of hybrid V2V-D2D communications overcomes the limitations of traditional V2V routing techniques. According to NS2 simulation results, the proposed hybrid model decreases the end to end delay (E2E) of messages delivery. A complete comparison of different D2D use cases (best & worst scenarios) is presented to show the enhancements brought by our solution compared to traditional V2V techniques.Comment: 6 page

    Resource Allocation for Network-Integrated Device-to-Device Communications Using Smart Relays

    Full text link
    With increasing number of autonomous heterogeneous devices in future mobile networks, an efficient resource allocation scheme is required to maximize network throughput and achieve higher spectral efficiency. In this paper, performance of network-integrated device-to-device (D2D) communication is investigated where D2D traffic is carried through relay nodes. An optimization problem is formulated for allocating radio resources to maximize end-to-end rate as well as conversing QoS requirements for cellular and D2D user equipment under total power constraint. Numerical results show that there is a distance threshold beyond which relay-assisted D2D communication significantly improves network performance when compared to direct communication between D2D peers

    Network-Assisted Device-to-Device (D2D) Direct Proximity Discovery with Underlay Communication

    Get PDF
    Device-to-Device communications are expected to play an important role in current and future cellular generations, by increasing the spatial reuse of spectrum resources and enabling lower latency communication links. This paradigm has two fundamental building blocks: (i) proximity discovery and (ii) direct communication between proximate devices. While (ii) is treated extensively in the recent literature, (i) has received relatively little attention. In this paper we analyze a network-assisted underlay proximity discovery protocol, where a cellular device can take the role of: announcer (which announces its interest in establishing a D2D connection) or monitor (which listens for the transmissions from the announcers). Traditionally, the announcers transmit their messages over dedicated channel resources. In contrast, inspired by recent advances on receivers with multiuser decoding capabilities, we consider the case where the announcers underlay their messages in the downlink transmissions that are directed towards the monitoring devices. We propose a power control scheme applied to the downlink transmission, which copes with the underlay transmission via additional power expenditure, while guaranteeing both reliable downlink transmissions and underlay proximity discovery.Comment: Accepted for presentation at Globecom 201

    Hierarchical Cooperation for Operator-Controlled Device-to-Device Communications: A Layered Coalitional Game Approach

    Full text link
    Device-to-Device (D2D) communications, which allow direct communication among mobile devices, have been proposed as an enabler of local services in 3GPP LTE-Advanced (LTE-A) cellular networks. This work investigates a hierarchical LTE-A network framework consisting of multiple D2D operators at the upper layer and a group of devices at the lower layer. We propose a cooperative model that allows the operators to improve their utility in terms of revenue by sharing their devices, and the devices to improve their payoff in terms of end-to-end throughput by collaboratively performing multi-path routing. To help understanding the interaction among operators and devices, we present a game-theoretic framework to model the cooperation behavior, and further, we propose a layered coalitional game (LCG) to address the decision making problems among them. Specifically, the cooperation of operators is modeled as an overlapping coalition formation game (CFG) in a partition form, in which operators should form a stable coalitional structure. Moreover, the cooperation of devices is modeled as a coalitional graphical game (CGG), in which devices establish links among each other to form a stable network structure for multi-path routing.We adopt the extended recursive core, and Nash network, as the stability concept for the proposed CFG and CGG, respectively. Numerical results demonstrate that the proposed LCG yields notable gains compared to both the non-cooperative case and a LCG variant and achieves good convergence speed.Comment: IEEE Wireless Communications and Networking Conference 201

    A Survey on Device-to-Device Communication in 5G Wireless Networks

    Get PDF
    The Device-to-Device (D2D) communication model in 5G networks provides a useful infrastructure to enable different applications. D2D communication, with use of cellular or ad-hoc links, improve the spectrum utilization, system throughput, and energy efficiency of the network thereby preparing the ability for the user equipment to start communications with each other in proximity. The purpose of this paper is preparing a survey based on the D2D communication and review the available literature that in a widespread way research about the D2D paradigm, different application scenarios, and use cases. Moreover, new suspicion in this area that leads to identifying open research problems of D2D communications in cellular networks.info:eu-repo/semantics/publishedVersio

    Selfishness in device-to-device communication underlaying cellular networks

    No full text
    In a device-to-device (D2D) communication underlaying cellular network, user equipments are required to operate cooperatively and unselfishly to transmit data as relays. However, most users behave in a more or less selfish way, which makes user selfishness a key factor that affects the performance of the whole communication system. We focus on the impact of node selfishness on D2D communications. By separating the user selfishness into two types in accordance with two D2D transmission modes – connected D2D transmission and opportunistic D2D transmission, we propose a time-varying graph model that characterizes the impacts of both individual and social selfishness on D2D communications. Simulation results obtained under the realistic networking settings indicate that the interaction between connected and opportunistic selfishness worsens the impairment caused by individual selfishness, while the harmful interaction caused by social selfishness can be alleviated
    • …
    corecore