6 research outputs found

    Analysis of operator differential-algebraic equations arising in fluid dynamics. Part II. The infinite dimensional case

    Get PDF
    Existence and uniqueness of generalized solutions to initial value problems for a class of abstract differential-algebraic equations (DAEs) is shown. The class of equations covers, in particular, the Stokes and Oseen problem describing the motion of an incompressible or nearly incompressible Newtonian fluid but also their spatial semi-discretization. The equations are governed by a block operator matrix with entries that fulfill suitable inf-sup conditions. The problem data are required to satisfy appropriate consistency conditions. The results in infinite dimensions are compared in detail with those known for the DAEs that arise after semi-discretization in space. Explicit solution formulas are derived in both cases

    Analysis of operator differential-algebraic equations arising in fluid dynamics. Part I. The finite dimensional case

    Get PDF
    Existence and uniqueness of solutions to initial value problems for a class of abstract differential-algebraic equations (DAEs) is shown. The class of equations cover, in particular, the spatially semi-discretized Stokes and Oseen problem describing the motion of an incompressible or nearly incompressible Newtonian fluid. Moreover, we derive explicit solution formulas

    Finite-region stability of 2-D singular Roesser systems with directional delays

    Get PDF
    In this paper, the problem of finite-region stability is studied for a class of two-dimensional (2-D) singular systems described by using the Roesser model with directional delays. Based on the regularity, we first decompose the underlying singular 2-D systems into fast and slow subsystems corresponding to dynamic and algebraic parts. Then, with the Lyapunov-like 2-D functional method, we construct a weighted 2-D functional candidate and utilize zero-type free matrix equations to derive delay-dependent stability conditions in terms of linear matrix inequalities (LMIs). More specifically, the derived conditions ensure that all state trajectories of the system do not exceed a prescribed threshold over a pre-specified finite region of time for any initial state sequences when energy-norms of dynamic parts do not exceed given bounds

    Model reduction techniques for linear constant coefficient port-Hamiltonian differential-algebraic systems

    Get PDF
    Port-based network modeling of multi-physics problems leads naturally to a formulation as port-Hamiltonian differential-algebraic system. In this way, the physical properties are directly encoded in the structure of the model. Since the state space dimension of such systems may be very large, in particular when the model is a space-discretized partial differential-algebraic system, in optimization and control there is a need for model reduction methods that preserve the port-Hamiltonian structure while keeping the (explicit and implicit) algebraic constraints unchanged. To combine model reduction for differential-algebraic equations with port-Hamiltonian structure preservation, we adapt two classes of techniques (reduction of the Dirac structure and moment matching) to handle port-Hamiltonian differential-algebraic equations. The performance of the methods is investigated for benchmark examples originating from semi-discretized flow problems and mechanical multibody systems

    Equations involving Malliavin calculus operators: applications and numerical approximation

    No full text
    This book provides a comprehensive and unified introduction to stochastic differential equations and related optimal control problems. The material is new and the presentation is reader-friendly. A major contribution of the book is the development of generalized Malliavin calculus in the framework of white noise analysis, based on chaos expansion representation of stochastic processes and its application for solving several classes of stochastic differential equations with singular data involving the main operators of Malliavin calculus. In addition, applications in optimal control and numerical approximations are discussed.  The book is divided into four chapters. The first, entitled White Noise Analysis and Chaos Expansions, includes notation and provides the reader with the theoretical background needed to understand the subsequent chapters.  In Chapter 2, Generalized Operators of Malliavin Calculus, the Malliavin derivative operator, the Skorokhod integral and the Ornstein-Uhlenbeck operator are introduced in terms of chaos expansions. The main properties of the operators, which are known in the literature for the square integrable processes, are proven using the chaos expansion approach and extended for generalized and test stochastic processes.  Chapter 3, Equations involving Malliavin Calculus operators, is devoted to the study of several types of stochastic differential equations that involve the operators of Malliavin calculus, introduced in the previous chapter. Fractional versions of these operators are also discussed. Finally, in Chapter 4, Applications and Numerical Approximations are discussed. Specifically, we consider the stochastic linear quadratic optimal control problem with different forms of noise disturbances, operator differential algebraic equations arising in fluid dynamics, stationary equations and fractional versions of the equations studied – applications never covered in the extant literature. Moreover, numerical validations of the method are provided for specific problems."
    corecore