1,099 research outputs found

    Microgrids: Legal and Regulatory Hurdles for a More Resilient Energy Infrastructure

    Get PDF
    Natural disasters and climate change have made it apparent that energy infrastructure needs to be modernized and microgrids are one type of technology that can help the electricity grid become more resilient, reliable, and efficient. Different states have begun developing microgrid pilot projects including California, New York, Connecticut, and Pennsylvania. The City of Pittsburgh, Pennsylvania is the first city to propose implementing “energy districts” of microgrids that will serve as critical infrastructure, in the first phase, and then expand to commercial and community settings. This large project involves many shareholders including public utilities, government agencies, and private entities. Utilizing microgrids on such a large scale raises issues regarding its classification, as energy generation or energy storage, and whether it should be regulated by public utilities, private entities, or municipalities. In a state like Pennsylvania where the energy market has been deregulated, there is strong concern on what the public utilities involvement will be with microgrid projects. This Note focuses on the regulatory issues that are raised with the construction and operation of microgrids at such a large scale in Pittsburgh. It addresses the difficulties that arise when implementing microgrids in a deregulated energy market state such as Pennsylvania, where little to no statutory language exists regarding microgrids. It will give an overview of proposed Pennsylvania legislation that may impact a public utilities’ control over microgrid technology and the benefits and costs when examining the extent of the public utilities’ role regarding ownership and control of microgrids in a deregulated energy market

    What Ukraine Taught NATO about Hybrid Warfare

    Get PDF
    Russia’s invasion of Ukraine in 2022 forced the United States and its NATO partners to be confronted with the impact of hybrid warfare far beyond the battlefield. Targeting Europe’s energy security, Russia’s malign influence campaigns and malicious cyber intrusions are affecting global gas prices, driving up food costs, disrupting supply chains and grids, and testing US and Allied military mobility. This study examines how hybrid warfare is being used by NATO’s adversaries, what vulnerabilities in energy security exist across the Alliance, and what mitigation strategies are available to the member states. Cyberattacks targeting the renewable energy landscape during Europe’s green transition are increasing, making it urgent that new tools are developed to protect these emerging technologies. No less significant are the cyber and information operations targeting energy security in Eastern Europe as it seeks to become independent from Russia. Economic coercion is being used against Western and Central Europe to stop gas from flowing. China’s malign investments in Southern and Mediterranean Europe are enabling Beijing to control several NATO member states’ critical energy infrastructure at a critical moment in the global balance of power. What Ukraine Taught NATO about Hybrid Warfare will be an important reference for NATO officials and US installations operating in the European theater.https://press.armywarcollege.edu/monographs/1952/thumbnail.jp

    Towards the next generation of smart grids: semantic and holonic multi-agent management of distributed energy resources

    Get PDF
    The energy landscape is experiencing accelerating change; centralized energy systems are being decarbonized, and transitioning towards distributed energy systems, facilitated by advances in power system management and information and communication technologies. This paper elaborates on these generations of energy systems by critically reviewing relevant authoritative literature. This includes a discussion of modern concepts such as ‘smart grid’, ‘microgrid’, ‘virtual power plant’ and ‘multi-energy system’, and the relationships between them, as well as the trends towards distributed intelligence and interoperability. Each of these emerging urban energy concepts holds merit when applied within a centralized grid paradigm, but very little research applies these approaches within the emerging energy landscape typified by a high penetration of distributed energy resources, prosumers (consumers and producers), interoperability, and big data. Given the ongoing boom in these fields, this will lead to new challenges and opportunities as the status-quo of energy systems changes dramatically. We argue that a new generation of holonic energy systems is required to orchestrate the interplay between these dense, diverse and distributed energy components. The paper therefore contributes a description of holonic energy systems and the implicit research required towards sustainability and resilience in the imminent energy landscape. This promotes the systemic features of autonomy, belonging, connectivity, diversity and emergence, and balances global and local system objectives, through adaptive control topologies and demand responsive energy management. Future research avenues are identified to support this transition regarding interoperability, secure distributed control and a system of systems approach

    Demand Side Management Studies on Distributed Energy Resources: A Survey

    Get PDF
    The number of distributed environmentally friendly energy sources and generators necessitates new operating methods and a power network board to preserve or even increase the efficiency and quality of the power supply. Similarly, the growth of matriculates promotes the formation of new institutional systems, in which power and power exchanges become increasingly essential. Because of how an inactive entity traditionally organizes distribution systems, the DG’s connection inevitably changes the system’s qualifications to which it is connected. As a consequence of the Distributed Generation, this presumption is currently legal and non-existent. This article glides on demand side management and analysis on distributed energy resources. Investigation of DSM along with zonal wise classification has been carried out in this survey. Its merits and applications are also presented

    Challenges for a transition towards the smart grids

    Get PDF
    The recent evolution of the power and energy systems has been driven by a number of factors concerning network modernisation, energy efficiency improvements, growing attention to the environmental and social impact, higher diffusion of renewable energy generation, as well as guaranteeing system security and enabling new services and consumer participation. This paper presents an overview on the key challenges for the future energy systems, that will have to face with the energy trilemma including environmental and social sustainability, energy security and energy equity. The impact of the use of electricity in the energy systems is growing, calling for the assessment of future scenarios to understand the possibility of occurrence of critical conditions. The technical analyses can be supported by the definition of appropriate indicators, some of which are recalled in this paper. Emergent issues like transportation system electrification and system resilience have to be addressed in a holistic way. The various aspects of energy transition and energy integration require more interdisciplinary analyses merging competences from the technical, economic, and sociological fields

    Demand side management studies on distributed energy resources: A survey

    Get PDF
    The number of distributed environmentally friendly energy sources and generators necessitates new operating methods and a power network board to preserve or even increase the efficiency and quality of the power supply. Similarly, the growth of matriculates promotes the formation of new institutional systems, in which power and power exchanges become increasingly essential. Because of how an inactive entity traditionally organizes distribution systems, the DG’s connection inevitably changes the system’s qualifications to which it is connected. As a consequence of the Distributed Generation, this presumption is currently legal and non-existent. This article glides on demand side management and analysis on distributed energy resources. Investigation of DSM along with zonal wise classification has been carried out in this survey. Its merits and applications are also presented.Universidad Tecnológica de Bolíva

    Microgrids and Resilience to Climate-Driven Impacts on Public Health

    Get PDF
    “Resilience” has burst into the lexicons of several policy areas in recent years, owing in no small part to climate change’s amplification of extreme events that severely disrupt the operation of natural, social, and engineered systems. Fostering resilience means anticipating severe disruptions and planning, investing, and designing so that such disruptions, which are certain to occur, are made shallower in depth and shorter in duration. Thus a resilient system or community can continue functioning despite disruptive events, return more swiftly to routine function following disruption, and incorporate new information so as to improve operations in extremis and speed future restorations. As different policy communities apply the concept of resilience to their respective missions, they emphasize different objectives. This article examines how the definitions adopted by the public health and electricity communities can, but do not necessarily, converge in responses to electricity outages so severe that they affect the operation of critical infrastructure, such as wastewater treatment and drinking water facilities, hospitals, and cooling centers. Currently, such outages cause a form of handoff from utilities to their customers: grid power fails and a small constellation of backup generators maintained by atomized campuses, facilities, or individual structures switch on, or fail to switch on, or were never purchased and so leave the location dark and its equipment inoperative. This handoff is operational, but it reflects legal obligations—and their limits. Enter the microgrid, a specially designed segment of the electricity distribution grid’s mesh that can either operate seamlessly as part of the wider grid, or as an independent “island” that serves some or all of the electricity users within its boundary even when the wider grid fails. Microgrids can, but do not necessarily, mitigate the adverse public health implications of the handoff that accompanies widespread and severe grid failure. To encourage the convergence of public health and electricity policy priorities in decisions about microgrid siting, design, and operation, this article makes several recommendations. Some of these should ideally be taken up at the federal level, but the bulk of the work they recommend should take place at the state-level, and would necessarily be implemented at the state and local levels

    Overlay networks for smart grids

    Get PDF

    Model predictive control for microgrid functionalities: review and future challenges

    Get PDF
    ABSTRACT: Renewable generation and energy storage systems are technologies which evoke the future energy paradigm. While these technologies have reached their technological maturity, the way they are integrated and operated in the future smart grids still presents several challenges. Microgrids appear as a key technology to pave the path towards the integration and optimized operation in smart grids. However, the optimization of microgrids considered as a set of subsystems introduces a high degree of complexity in the associated control problem. Model Predictive Control (MPC) is a control methodology which has been satisfactorily applied to solve complex control problems in the industry and also currently it is widely researched and adopted in the research community. This paper reviews the application of MPC to microgrids from the point of view of their main functionalities, describing the design methodology and the main current advances. Finally, challenges and future perspectives of MPC and its applications in microgrids are described and summarized.info:eu-repo/semantics/publishedVersio
    corecore