1,352 research outputs found

    Operation modes of battery chargers for electric vehicles in the future smart grids

    Get PDF
    This paper presents an on-board bidirectional battery charger for Electric Vehicles (EVs), which operates in three different modes: Grid-to- Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H). Through these three operation modes, using bidirectional communications based on Information and Communication Technologies (ICT), it will be possible to exchange data between the EV driver and the future smart grids. This collaboration with the smart grids will strengthen the collective awareness systems, contributing to solve and organize issues related with energy resources and power grids. This paper presents the preliminary studies that results from a PhD work related with bidirectional battery chargers for EVs. Thus, in this paper is described the topology of the on-board bidirectional battery charger and the control algorithms for the three operation modes. To validate the topology it was developed a laboratory prototype, and were obtained experimental results for the three operation modes.FEDER Funds, through the Operational Programme for Competitiveness Factors – COMPETE, and by National Funds through FCT – Foundation for Science and Technology of Portugal, under the project FCOMP-01-0124- FEDER-022674, and QREN project AAC n.º36/SI/2009 – 1384

    Operation Modes of Battery Chargers for Electric Vehicles in the Future Smart Grids

    Get PDF
    This paper presents an on-board bidirectional battery charger for Electric Vehicles (EVs), which operates in three different modes: Grid-to- Vehicle (G2V), Vehicle-to-Grid (V2G), and Vehicle-to-Home (V2H). Through these three operation modes, using bidirectional communications based on Information and Communication Technologies (ICT), it will be possible to exchange data between the EV driver and the future smart grids. This collaboration with the smart grids will strengthen the collective awareness systems, contributing to solve and organize issues related with energy resources and power grids. This paper presents the preliminary studies that results from a PhD work related with bidirectional battery chargers for EVs. Thus, in this paper is described the topology of the on-board bidirectional battery charger and the control algorithms for the three operation modes. To validate the topology it was developed a laboratory prototype, and were obtained experimental results for the three operation modes. FEDER Funds, through the Operational Programme for Competitiveness Factors COMPETE, and by National Funds through FCT Foundation for Science and Technology of Portugal, under the project FCOMP-01-0124- FEDER-022674, and QREN project AAC n.º36/SI/2009 13844 Document type: Part of book or chapter of boo

    New opportunities and perspectives for the electric vehicle operation in smart grids and smart homes scenarios

    Get PDF
    New perspectives for the electric vehicle (EV) operation in smart grids and smart homes context are presented. Nowadays, plugged-in EVs are equipped with on-board battery chargers just to perform the charging process from the electrical power grid (G2V – grid-to-vehicle mode). Although this is the main goal of such battery chargers, maintaining the main hardware structure and changing the digital control algorithm, the on-board battery chargers can also be used to perform additional operation modes. Such operation modes are related with returning energy from the batteries to the power grid (V2G- vehicle-to-grid mode), constraints of the electrical installation where the EV is plugged-in (iG2V – improved grid-tovehicle mode), interface of renewables, and contributions to improve the power quality in the electrical installation. Besides the contributions of the EV to reduce oil consumption and greenhouse gas emissions associated to the transportation sector, through these additional operation modes, the EV also represents an important contribution for the smart grids and smart homes paradigms. Experimental results introducing the EV through the aforementioned interfaces and operation modes are presented. An on-board EV battery charger prototype was used connected to the power grid for a maximum power of 3.6 kW.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation Ǧ COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015- POCI- 01-0145-FEDER-016434.info:eu-repo/semantics/publishedVersio

    Vehicle electrification: technologies, challenges and a global perspective for smart grids

    Get PDF
    Nowadays, due to economic and climate concerns, the private transportation sector is shifting for the vehicle electrification, mainly supported by electric and hybrid plug-in vehicles. For this new reality, new challenges about operation modes are emerging, demanding a cooperative and dynamic operation with the electrical power grid, guaranteeing a stable integration without omitting the power quality for the grid-side and for the vehicle-side. Besides the operation modes, new attractive and complementary technologies are offered by the vehicle electrification in the context of smart grids, which are valid for both on-board and off-board systems. In this perspective, this book chapter presents a global perspective and deals with challenges for the vehicle electrification, covering the key technologies toward a sustainable future. Among others, the flowing topics are covered: (1) Overview of power electronics structures for battery charging systems, including on-board and off-board systems; (2) State-of-the-art of communication technologies for application in the context of vehicular electrification, smart grids and smart homes; (3) Challenges and opportunities concerning wireless power transfer with bidirectional interface to the electrical grid; (4) Future perspectives about bidirectional power transfer between electric vehicles (vehicle-to-vehicle operation mode); (5) Unified technologies, allowing to combine functionalities of a bidirectional interface with the electrical grid and motor driver based on a single system; and (6) Smart grids and smart homes scenarios and accessible opportunities about operation modes.Fundação para a Ciência e Tecnologia (FCT

    Electric vehicles on-board battery charger for the future smart grids

    Get PDF
    The recent and massive investments in Electric Vehicles (EVs) reveal a change of paradigm in the transports sector and the proliferation of EVs will contribute to an effective reduction in the emissions of greenhouse gases. Nevertheless, for the electrical power grids EVs will be extra loads, which will require the demand energy to charge their batteries. With the advent of the Smart Grids, besides the usual battery charging mode (Grid-to-Vehicle – G2V), where the batteries receives energy from the power grid, arises a new concept for the users of EVs and for the power grid market, denominated as Vehicle-to-Grid (V2G). In the V2G operation mode, EVs return to the power grid part of the energy stored in their batteries. The V2G concept requires the use of battery chargers for the EVs with bidirectional power flow capability and bidirectional communication with the Smart Grids through Information and Communication Technology (ICT) applications. It is important to highlight that the proliferation of EVs and the impact of their battery chargers on the power grid quality is a matter of concern, since conventional chargers present current harmonics and power factor problems. In this paper it is presented the preliminary studies resulting from a PhD work about a bidirectional battery charger for EVs, which was designed to operate in collaboration with the power grid as G2V and V2G through an ICT application. In this way, it is expectable to contribute to the technological innovation of the electric mobility in Smart Grids. To assess the behavior of the proposed battery charger under different scenarios of operation, a prototype has been developed, and some simulation and experimental results of the battery charger are presented.Fundação para a Ciência e a Tecnologia (FCT); FEDER Funds, through the Operational Programme for Competitiveness Factors – COMPETE, and by National Funds through FCT – Foun- dation for Science and Technology of Portugal, under the projects: FCOMP-01-0124- FEDER-022674 an d PTDC/EEA-EEL/104569/200

    The role of the electric vehicle in smart homes: Assessment and future perspectives

    Get PDF
    The wide spreading of electric mobility is imposing the application of new technologies of hardware and software for supporting new operation paradigms, not only in the perspective of improving smart grids, but also each time more in the perspective of boosting the preponderance of smart homes. Concretely, nowadays it is clear that the emergent technologies for smart homes, targeting power quality and a more efficient power management, are also altering the conventional electrical power grids toward smart grids. In this panorama, by relating the strategic pillars of electric mobility and smart homes, this paper has as main objective the characterization of the role of the electric vehicle (EV) in smart homes, presenting a broad assessment based on the state of the art, as well as creating a link with upcoming advanced operations. From the smart home point of view, since it should be equipped to deal with the requirements of the EV, the assessment of both on-board and off-board EV battery charging systems are considered along the paper. Furthermore, the presence of technologies such as energy storage systems, renewable energy sources and dc electrical appliances in smart homes towards sustainability is also reflected in this paper, but framed from the point of view of an off-board EV battery charging system, since it is more convenient for enabling the interface of these mentioned technologies. Looking the paper as a whole, a relevant contribution is the discussion of future operations for the EV in smart homes, also envisioning the opportunity for ac, dc, or hybrid power grids. Illustrative and strategic results are shown, covering all these features with specific details, not only based on numerical simulations, but also based on experimental results, which were obtained with a proof-of-concept laboratory prototype.FCT -Fundação para a Ciência e a Tecnologia(DAIPESEV PTDC/EEI-EEE/30382/2017

    Comprehensive analysis and cost estimation of five-level bidirectional converters for electric vehicles operation in smart cities context

    Get PDF
    A comprehensive analysis, comparison and cost estimation of five-level bidirectional converters for the electric vehicle (EV) operation in smart cities context is presented in this paper. Nowadays, five-level converters are widely used with success to interface between the power grid and renewable energy sources, as well as, to operate as motor drivers. Therefore, with the EV introduction into the power grids arises a new opportunity to use such five-level converters as interface between the power grid and the EV batteries, i.e., in on-board charger applications. Moreover, considering the future scenarios of smart grids and smart cities, the five-level bidirectional converters will be essential for the operation modes grid-to-vehicle (G2V, charging the batteries from the power grid) and vehicle-to-grid (V2G, returning energy from the batteries to the power grid). In this context, this paper presents an aggregation of the most important five-level bidirectional converter topologies that can be applied for on-board EV chargers in smart cities context. Along the paper it is presented a detailed description of the hardware and control algorithms of the five-level converters, and are also presented and explained simulation results performed under realistic operating conditions. Finally, it is presented the cost estimation for a real application considering the hardware requirements for each one of the converters.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2013 and by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation Ǧ COMPETE 2020 Programme, and by National Funds through the Portuguese funding agency, FCT Ǧ Fundação para a Ciência e a Tecnologia, within project SAICTPAC/0004/2015-POCI-01-0145-FEDER-016434.info:eu-repo/semantics/publishedVersio

    Integrated system for traction and battery charging of electric vehicles with universal interface to the power grid

    Get PDF
    This paper proposes an integrated system for traction and battery charging of electric vehicles (EVs) with universal interface to the power grid. In the proposed system, the power electronics converters comprising the traction drive system are also used for the battery charging system, reducing the required hardware, meaning the integrated characteristic of the system. Besides, this interface is universal, since it can be performed with the three main types of power grids, namely: (1) Single-phase AC power grids; (2) Three-phase AC power grids; (3) DC power grids. In these three types of interfaces with the power grid, as well as in the traction drive operation mode, bidirectional operation is possible, framing the integration of this system into an EV in the context of smart grids. Moreover, the proposed system endows an EV with an on-board fast battery charger, whose operation allows either fast or slow battery charging. The main contributes of the proposed system are detailed in the paper, and simulation results are presented in order to attain the feasibility of the proposed system.This work has been supported by COMPETE: POCI-01-0145-FEDER-007043 and FCT -Fundacao para a Ciencia e Tecnologia within the Project Scope: UID/CEC/00319/2013. This work has been supported by FCT within the Project Scope DAIPESEV - Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283

    The state of the art of battery charging infrastructure for electrical vehicles: Topologies, power control strategies, and future trend

    Get PDF
    Electric vehicle battery (EVB) charger topologies play a vital role to increase the penetration of EVs. This paper reviews the status quo of EV battery (EVB) chargers in term of converter topologies, operation modes, and power control strategies for EVs. EVB Chargers are classified based on their power levels and power flow direction. Referring to power ratings, EV chargers can be divided into Level 1, Level 2 and Level 3. Level 1 and Level 2 are normally compatible with on-board chargers while Level 3 is used for an off-board charger. Unidirectional/bidirectional power flow can be obtained at all power levels. However, bidirectional power flow is usually designed for Level 3 chargers as it can provide the huge benefit of transferring power back to grid when needed. Moreover, the different operation modes of an EVB charger are also presented. There are two main modes: Grid-to-Vehicle (V1G or G2V) and Vehicle-to-Grid (V2G). The V2G mode helps bring EV batteries to become active distributed sources in smart grids and is the crucial solution for a high EV penetration. Future trend and authors\u27 recommendations with preliminary simulation and experimental results are demonstrated in this paper

    Unified power converters for battery charging and traction drive systems for electric vehicles: cost and performance analysis

    Get PDF
    Electric vehicles (EVs) are a promising solution to mitigate the emission of greenhouse gases and atmospheric pollution. Although EVs existence spans from more than one century, only in the recent years there has been a considerable development in the electric mobility paradigm. This development is also verified in the operation modes for the EV, giving it an important role in smart grids. Moreover, the implementation of unified power converters for battery charging and traction drive systems is also a key topic about EVs, allowing at the same time a hardware reduction and an increasing in its functionalities. However, no economic studies about the practical feasibility of these unified systems for EVs have been reported in the literature. In this context, this paper presents a cost assessment of unified battery charging and traction drive systems for EVs focusing on practical aspects. An economic comparison is performed between a traditional EV and a unified system in order to attain a cost/performance analysis for the unified power converters that can be used in EVs.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by FCT within the Project Scope DAIPESEV – Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency
    • …
    corecore