26 research outputs found

    Non-minimal adaptive routing for efficient interconnection networks

    Get PDF
    RESUMEN: La red de interconexión es un concepto clave de los sistemas de computación paralelos. El primer aspecto que define una red de interconexión es su topología. Habitualmente, las redes escalables y eficientes en términos de coste y consumo energético tienen bajo diámetro y se basan en topologías que encaran el límite de Moore y en las que no hay diversidad de caminos mínimos. Una vez definida la topología, quedando implícitamente definidos los límites de rendimiento de la red, es necesario diseñar un algoritmo de enrutamiento que se acerque lo máximo posible a esos límites y debido a la ausencia de caminos mínimos, este además debe explotar los caminos no mínimos cuando el tráfico es adverso. Estos algoritmos de enrutamiento habitualmente seleccionan entre rutas mínimas y no mínimas en base a las condiciones de la red. Las rutas no mínimas habitualmente se basan en el algoritmo de balanceo de carga propuesto por Valiant, esto implica que doblan la longitud de las rutas mínimas y por lo tanto, la latencia soportada por los paquetes se incrementa. En cuanto a la tecnología, desde su introducción en entornos HPC a principios de los años 2000, Ethernet ha sido usado en un porcentaje representativo de los sistemas. Esta tesis introduce una implementación realista y competitiva de una red escalable y sin pérdidas basada en dispositivos de red Ethernet commodity, considerando topologías de bajo diámetro y bajo consumo energético y logrando un ahorro energético de hasta un 54%. Además, propone un enrutamiento sobre la citada arquitectura, en adelante QCN-Switch, el cual selecciona entre rutas mínimas y no mínimas basado en notificaciones de congestión explícitas. Una vez implementada la decisión de enrutar siguiendo rutas no mínimas, se introduce un enrutamiento adaptativo en fuente capaz de adaptar el número de saltos en las rutas no mínimas. Este enrutamiento, en adelante ACOR, es agnóstico de la topología y mejora la latencia en hasta un 28%. Finalmente, se introduce un enrutamiento dependiente de la topología, en adelante LIAN, que optimiza el número de saltos de las rutas no mínimas basado en las condiciones de la red. Los resultados de su evaluación muestran que obtiene una latencia cuasi óptima y mejora el rendimiento de algoritmos de enrutamiento actuales reduciendo la latencia en hasta un 30% y obteniendo un rendimiento estable y equitativo.ABSTRACT: Interconnection network is a key concept of any parallel computing system. The first aspect to define an interconnection network is its topology. Typically, power and cost-efficient scalable networks with low diameter rely on topologies that approach the Moore bound in which there is no minimal path diversity. Once the topology is defined, the performance bounds of the network are determined consequently, so a suitable routing algorithm should be designed to accomplish as much as possible of those limits and, due to the lack of minimal path diversity, it must exploit non-minimal paths when the traffic pattern is adversarial. These routing algorithms usually select between minimal and non-minimal paths based on the network conditions, where the non-minimal paths are built according to Valiant load-balancing algorithm. This implies that these paths double the length of minimal ones and then the latency supported by packets increases. Regarding the technology, from its introduction in HPC systems in the early 2000s, Ethernet has been used in a significant fraction of the systems. This dissertation introduces a realistic and competitive implementation of a scalable lossless Ethernet network for HPC environments considering low-diameter and low-power topologies. This allows for up to 54% power savings. Furthermore, it proposes a routing upon the cited architecture, hereon QCN-Switch, which selects between minimal and non-minimal paths per packet based on explicit congestion notifications instead of credits. Once the miss-routing decision is implemented, it introduces two mechanisms regarding the selection of the intermediate switch to develop a source adaptive routing algorithm capable of adapting the number of hops in the non-minimal paths. This routing, hereon ACOR, is topology-agnostic and improves average latency in all cases up to 28%. Finally, a topology-dependent routing, hereon LIAN, is introduced to optimize the number of hops in the non-minimal paths based on the network live conditions. Evaluations show that LIAN obtains almost-optimal latency and outperforms state-of-the-art adaptive routing algorithms, reducing latency by up to 30.0% and providing stable throughput and fairness.This work has been supported by the Spanish Ministry of Education, Culture and Sports under grant FPU14/02253, the Spanish Ministry of Economy, Industry and Competitiveness under contracts TIN2010-21291-C02-02, TIN2013-46957-C2-2-P, and TIN2013-46957-C2-2-P (AEI/FEDER, UE), the Spanish Research Agency under contract PID2019-105660RBC22/AEI/10.13039/501100011033, the European Union under agreements FP7-ICT-2011- 7-288777 (Mont-Blanc 1) and FP7-ICT-2013-10-610402 (Mont-Blanc 2), the University of Cantabria under project PAR.30.P072.64004, and by the European HiPEAC Network of Excellence through an internship grant supported by the European Union’s Horizon 2020 research and innovation program under grant agreement No. H2020-ICT-2015-687689

    SDT: A Low-cost and Topology-reconfigurable Testbed for Network Research

    Full text link
    Network experiments are essential to network-related scientific research (e.g., congestion control, QoS, network topology design, and traffic engineering). However, (re)configuring various topologies on a real testbed is expensive, time-consuming, and error-prone. In this paper, we propose \emph{Software Defined Topology Testbed (SDT)}, a method for constructing a user-defined network topology using a few commodity switches. SDT is low-cost, deployment-friendly, and reconfigurable, which can run multiple sets of experiments under different topologies by simply using different topology configuration files at the controller we designed. We implement a prototype of SDT and conduct numerous experiments. Evaluations show that SDT only introduces at most 2\% extra overhead than full testbeds on multi-hop latency and is far more efficient than software simulators (reducing the evaluation time by up to 2899x). SDT is more cost-effective and scalable than existing Topology Projection (TP) solutions. Further experiments show that SDT can support various network research experiments at a low cost on topics including but not limited to topology design, congestion control, and traffic engineering.Comment: This paper will be published in IEEE CLUSTER 2023. Preview version onl

    Dynamic LightPath allocation in WDM networks using an SDN controller

    Full text link
    Core wavelength division multiplexed (WDM) networks are widely used to provide fixed physical connectivity and bandwidth to the logically connected upper electronic layer devices using optical signals. However, growing demands for bandwidth-intensive applications and cloud-based services push optical networks carriers' to provide scalable and flexible services dynamically. Software defined networking (SDN) has the potential to program electronic layers by dynamically controlling and managing network resources using SDN controller applications. SDN's on-demand characteristics combined with the optical circuit-switching can enable optical network service providers to customize their service provisioning dynamically to the user's requirements. They enable fast provision of new services, and minimize underutilization of resources. In this paper, a model is proposed to bring the dynamic allocation of resources which is a layer 2+ functionality, to the WDM layer using SDN. A middle-ware application based on SDN and OpenFlow for dynamic switching and provisioning of optical service is presented. The application abstracts the optical layer's connectivity, also accounting for the switching constraints. Details of the model's implementation are discussed considering classically used equipment and its performance in terms of CPU and memory utilization, topology emulation time, and latency is evaluated. Finally, the application is tested with a Cisco layer one switch. Performance results show that the latency doubles when increasing the number of fibers of an optical cross connect from 5 to 7 and keeping wavelengths equal to 8, with Clos fabric topology

    (EMC)-M-3: Improving Energy Efficiency via Elastic Multi-Controller SDN in Data Center Networks

    Get PDF
    Energy consumed by network constitutes a significant portion of the total power budget in modern data centers. Thus, it is critical to understand the energy consumption and improve the power efficiency of data center networks (DCNs). In doing so, one straightforward and effective way is to make the size of DCNs elastic along with traffic demands, i.e., turning off unnecessary network components to reduce the energy consumption. Today, software defined networking (SDN), as one of the most promising solutions for data center management, provides a paradigm to elastically control the resources of DCNs. However, to the best of our knowledge, the features of SDN have not been fully leveraged to improve the power saving, especially for large-scale multi-controller DCNs. To address this problem, we propose (EMC)-M-3, a mechanism to improve DCN\u27s energy efficiency via the elastic multi-controller SDN. In (EMC)-M-3, the energy optimizations for both forwarding and control plane are considered by utilizing SDN\u27s fine-grained routing and dynamic control mapping. In particular, the flow network theory and the bin-packing heuristic are used to deal with the forwarding plane and control plane, respectively. Our simulation results show that E3MC can achieve more efficient power management, especially in highly structured topologies such as Fat-Tree and BCube, by saving up to 50% of network energy, at an acceptable level of computation cost

    Reconfigurable network systems and software-defined networking

    Get PDF
    Modern high-speed networks have evolved from relatively static networks to highly adaptive networks facilitating dynamic reconfiguration. This evolution has influenced all levels of network design and management, introducing increased programmability and configuration flexibility. This influence has extended from the lowest level of physical hardware interfaces to the highest level of network management by software. A key representative of this evolution is the emergence of softwaredefined networking (SDN). In this paper, we review the current state of the art in reconfigurable network systems, covering hardware reconfiguration, SDN, and the interplay between them. We take a top-down approach, starting with a tutorial on software-defined networks. We then continue to discuss programming languages as the linking element between different levels of software and hardware in the network. We review electronic switching systems, highlighting programmability and reconfiguration aspects, and describe the trends in reconfigurable network elements. Finally, we describe the state of the art in the integration of photonic transceiver and switching elements with electronic technologies, and consider the implications for SDN and reconfigurable network systems.This work was jointly supported by the UKs Engineering and Physical Sciences Research Council (EPSRC) Internet Project EP/H040536/1, an EPSRC Research Fellowship grant to Philip Watts (EP/I004157/2), and DARPA and AFRL under contract FA8750-11-C-0249.This is the final version of the article. It first appeared from IEEE via http://dx.doi.org/10.1109/JPROC.2015.243573

    IPNoSys III:SDN Paradigm in a non-conventional NoC-based Processor / IPNoSys III: O Paradigma SDN em uma NoC Baseada em um Processador Não Convencional

    Get PDF
    Dynamic resource allocation has a significant impact on the performance of MPSoCs (Multiprocessors System-on-Chip) based on Networks-on-Chip (NoCs). In this work, we propose the IPNoSys III, an NoC using Software Defined Networks (SDN) paradigm applied to IPNoSys, a parallel non-conventional architecture. IPNoSys III has a 2D mesh topology, that contains in each node four processing cores, connected to a memory and that run packages in the IPNoSys format, and a communication unit. An SDN controller, connected to all nodes, manages the network and has an overview of the network to execute the routing algorithm and to map tasks according to the performance objectives. The results show up to 17% better performance in clock cycles to the SDN controller than a static solution and up to 46% better when comparing IPNoSys III to a conventional NoC. 

    Cross-Layer Design for Energy Efficiency on Data Center Network

    Get PDF
    Energy efficient infrastructures or green IT (Information Technology) has recently become a hot button issue for most corporations as they strive to eliminate every inefficiency from their enterprise IT systems and save capital and operational costs. Vendors of IT equipment now compete on the power efficiency of their devices, and as a result, many of the new equipment models are indeed more energy efficient. Various studies have estimated the annual electricity consumed by networking devices in the U.S. in the range of 6 - 20 Terra Watt hours. Our research has the potential to make promising solutions solve those overuses of electricity. An energy-efficient data center network architecture which can lower the energy consumption is highly desirable. First of all, we propose a fair bandwidth allocation algorithm which adopts the max-min fairness principle to decrease power consumption on packet switch fabric interconnects. Specifically, we include power aware computing factor as high power dissipation in switches which is fast turning into a key problem, owing to increasing line speeds and decreasing chip sizes. This efficient algorithm could not only reduce the convergence iterations but also lower processing power utilization on switch fabric interconnects. Secondly, we study the deployment strategy of multicast switches in hybrid mode in energy-aware data center network: a case of famous Fat-tree topology. The objective is to find the best location to deploy multicast switch not only to achieve optimal bandwidth utilization but also minimize power consumption. We show that it is possible to easily achieve nearly 50% of energy consumption after applying our proposed algorithm. Finally, although there exists a number of energy optimization solutions for DCNs, they consider only either the hosts or network, but not both. We propose a joint optimization scheme that simultaneously optimizes virtual machine (VM) placement and network flow routing to maximize energy savings. The simulation results fully demonstrate that our design outperforms existing host- or network-only optimization solutions, and well approximates the ideal but NP-complete linear program. To sum up, this study could be crucial for guiding future eco-friendly data center network that deploy our algorithm on four major layers (with reference to OSI seven layers) which are physical, data link, network and application layer to benefit power consumption in green data center

    FatPaths: Routing in Supercomputers and Data Centers when Shortest Paths Fall Short

    Full text link
    We introduce FatPaths: a simple, generic, and robust routing architecture that enables state-of-the-art low-diameter topologies such as Slim Fly to achieve unprecedented performance. FatPaths targets Ethernet stacks in both HPC supercomputers as well as cloud data centers and clusters. FatPaths exposes and exploits the rich ("fat") diversity of both minimal and non-minimal paths for high-performance multi-pathing. Moreover, FatPaths uses a redesigned "purified" transport layer that removes virtually all TCP performance issues (e.g., the slow start), and incorporates flowlet switching, a technique used to prevent packet reordering in TCP networks, to enable very simple and effective load balancing. Our design enables recent low-diameter topologies to outperform powerful Clos designs, achieving 15% higher net throughput at 2x lower latency for comparable cost. FatPaths will significantly accelerate Ethernet clusters that form more than 50% of the Top500 list and it may become a standard routing scheme for modern topologies
    corecore