33,413 research outputs found

    Furniture models learned from the WWW: using web catalogs to locate and categorize unknown furniture pieces in 3D laser scans

    Get PDF
    In this article, we investigate how autonomous robots can exploit the high quality information already available from the WWW concerning 3-D models of office furniture. Apart from the hobbyist effort in Google 3-D Warehouse, many companies providing office furnishings already have the models for considerable portions of the objects found in our workplaces and homes. In particular, we present an approach that allows a robot to learn generic models of typical office furniture using examples found in the Web. These generic models are then used by the robot to locate and categorize unknown furniture in real indoor environments

    Access to recorded interviews: A research agenda

    Get PDF
    Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed

    New Method for Optimization of License Plate Recognition system with Use of Edge Detection and Connected Component

    Full text link
    License Plate recognition plays an important role on the traffic monitoring and parking management systems. In this paper, a fast and real time method has been proposed which has an appropriate application to find tilt and poor quality plates. In the proposed method, at the beginning, the image is converted into binary mode using adaptive threshold. Then, by using some edge detection and morphology operations, plate number location has been specified. Finally, if the plat has tilt, its tilt is removed away. This method has been tested on another paper data set that has different images of the background, considering distance, and angel of view so that the correct extraction rate of plate reached at 98.66%.Comment: 3rd IEEE International Conference on Computer and Knowledge Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi Universit Mashha

    Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues

    Get PDF
    Recognizing scene text is a challenging problem, even more so than the recognition of scanned documents. This problem has gained significant attention from the computer vision community in recent years, and several methods based on energy minimization frameworks and deep learning approaches have been proposed. In this work, we focus on the energy minimization framework and propose a model that exploits both bottom-up and top-down cues for recognizing cropped words extracted from street images. The bottom-up cues are derived from individual character detections from an image. We build a conditional random field model on these detections to jointly model the strength of the detections and the interactions between them. These interactions are top-down cues obtained from a lexicon-based prior, i.e., language statistics. The optimal word represented by the text image is obtained by minimizing the energy function corresponding to the random field model. We evaluate our proposed algorithm extensively on a number of cropped scene text benchmark datasets, namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word, and show better performance than comparable methods. We perform a rigorous analysis of all the steps in our approach and analyze the results. We also show that state-of-the-art convolutional neural network features can be integrated in our framework to further improve the recognition performance

    2kenize: Tying Subword Sequences for Chinese Script Conversion

    Full text link
    Simplified Chinese to Traditional Chinese character conversion is a common preprocessing step in Chinese NLP. Despite this, current approaches have poor performance because they do not take into account that a simplified Chinese character can correspond to multiple traditional characters. Here, we propose a model that can disambiguate between mappings and convert between the two scripts. The model is based on subword segmentation, two language models, as well as a method for mapping between subword sequences. We further construct benchmark datasets for topic classification and script conversion. Our proposed method outperforms previous Chinese Character conversion approaches by 6 points in accuracy. These results are further confirmed in a downstream application, where 2kenize is used to convert pretraining dataset for topic classification. An error analysis reveals that our method's particular strengths are in dealing with code-mixing and named entities.Comment: Accepted to ACL 202

    Using Generic Summarization to Improve Music Information Retrieval Tasks

    Get PDF
    In order to satisfy processing time constraints, many MIR tasks process only a segment of the whole music signal. This practice may lead to decreasing performance, since the most important information for the tasks may not be in those processed segments. In this paper, we leverage generic summarization algorithms, previously applied to text and speech summarization, to summarize items in music datasets. These algorithms build summaries, that are both concise and diverse, by selecting appropriate segments from the input signal which makes them good candidates to summarize music as well. We evaluate the summarization process on binary and multiclass music genre classification tasks, by comparing the performance obtained using summarized datasets against the performances obtained using continuous segments (which is the traditional method used for addressing the previously mentioned time constraints) and full songs of the same original dataset. We show that GRASSHOPPER, LexRank, LSA, MMR, and a Support Sets-based Centrality model improve classification performance when compared to selected 30-second baselines. We also show that summarized datasets lead to a classification performance whose difference is not statistically significant from using full songs. Furthermore, we make an argument stating the advantages of sharing summarized datasets for future MIR research.Comment: 24 pages, 10 tables; Submitted to IEEE/ACM Transactions on Audio, Speech and Language Processin
    corecore