33,413 research outputs found
Furniture models learned from the WWW: using web catalogs to locate and categorize unknown furniture pieces in 3D laser scans
In this article, we investigate how autonomous robots can exploit the high quality information already available from the WWW concerning 3-D models of office furniture. Apart from the hobbyist effort in Google 3-D Warehouse, many companies providing office furnishings already have the models for considerable portions of the objects found in our workplaces and homes. In particular, we present an approach that allows a robot to learn generic models of typical office furniture using examples found in the Web. These generic models are then used by the robot to locate and categorize unknown furniture in real indoor environments
Access to recorded interviews: A research agenda
Recorded interviews form a rich basis for scholarly inquiry. Examples include oral histories, community memory projects, and interviews conducted for broadcast media. Emerging technologies offer the potential to radically transform the way in which recorded interviews are made accessible, but this vision will demand substantial investments from a broad range of research communities. This article reviews the present state of practice for making recorded interviews available and the state-of-the-art for key component technologies. A large number of important research issues are identified, and from that set of issues, a coherent research agenda is proposed
New Method for Optimization of License Plate Recognition system with Use of Edge Detection and Connected Component
License Plate recognition plays an important role on the traffic monitoring
and parking management systems. In this paper, a fast and real time method has
been proposed which has an appropriate application to find tilt and poor
quality plates. In the proposed method, at the beginning, the image is
converted into binary mode using adaptive threshold. Then, by using some edge
detection and morphology operations, plate number location has been specified.
Finally, if the plat has tilt, its tilt is removed away. This method has been
tested on another paper data set that has different images of the background,
considering distance, and angel of view so that the correct extraction rate of
plate reached at 98.66%.Comment: 3rd IEEE International Conference on Computer and Knowledge
Engineering (ICCKE 2013), October 31 & November 1, 2013, Ferdowsi Universit
Mashha
Enhancing Energy Minimization Framework for Scene Text Recognition with Top-Down Cues
Recognizing scene text is a challenging problem, even more so than the
recognition of scanned documents. This problem has gained significant attention
from the computer vision community in recent years, and several methods based
on energy minimization frameworks and deep learning approaches have been
proposed. In this work, we focus on the energy minimization framework and
propose a model that exploits both bottom-up and top-down cues for recognizing
cropped words extracted from street images. The bottom-up cues are derived from
individual character detections from an image. We build a conditional random
field model on these detections to jointly model the strength of the detections
and the interactions between them. These interactions are top-down cues
obtained from a lexicon-based prior, i.e., language statistics. The optimal
word represented by the text image is obtained by minimizing the energy
function corresponding to the random field model. We evaluate our proposed
algorithm extensively on a number of cropped scene text benchmark datasets,
namely Street View Text, ICDAR 2003, 2011 and 2013 datasets, and IIIT 5K-word,
and show better performance than comparable methods. We perform a rigorous
analysis of all the steps in our approach and analyze the results. We also show
that state-of-the-art convolutional neural network features can be integrated
in our framework to further improve the recognition performance
2kenize: Tying Subword Sequences for Chinese Script Conversion
Simplified Chinese to Traditional Chinese character conversion is a common
preprocessing step in Chinese NLP. Despite this, current approaches have poor
performance because they do not take into account that a simplified Chinese
character can correspond to multiple traditional characters. Here, we propose a
model that can disambiguate between mappings and convert between the two
scripts. The model is based on subword segmentation, two language models, as
well as a method for mapping between subword sequences. We further construct
benchmark datasets for topic classification and script conversion. Our proposed
method outperforms previous Chinese Character conversion approaches by 6 points
in accuracy. These results are further confirmed in a downstream application,
where 2kenize is used to convert pretraining dataset for topic classification.
An error analysis reveals that our method's particular strengths are in dealing
with code-mixing and named entities.Comment: Accepted to ACL 202
Using Generic Summarization to Improve Music Information Retrieval Tasks
In order to satisfy processing time constraints, many MIR tasks process only
a segment of the whole music signal. This practice may lead to decreasing
performance, since the most important information for the tasks may not be in
those processed segments. In this paper, we leverage generic summarization
algorithms, previously applied to text and speech summarization, to summarize
items in music datasets. These algorithms build summaries, that are both
concise and diverse, by selecting appropriate segments from the input signal
which makes them good candidates to summarize music as well. We evaluate the
summarization process on binary and multiclass music genre classification
tasks, by comparing the performance obtained using summarized datasets against
the performances obtained using continuous segments (which is the traditional
method used for addressing the previously mentioned time constraints) and full
songs of the same original dataset. We show that GRASSHOPPER, LexRank, LSA,
MMR, and a Support Sets-based Centrality model improve classification
performance when compared to selected 30-second baselines. We also show that
summarized datasets lead to a classification performance whose difference is
not statistically significant from using full songs. Furthermore, we make an
argument stating the advantages of sharing summarized datasets for future MIR
research.Comment: 24 pages, 10 tables; Submitted to IEEE/ACM Transactions on Audio,
Speech and Language Processin
- …
