8,609 research outputs found

    Open-Ended Medical Visual Question Answering Through Prefix Tuning of Language Models

    Full text link
    Medical Visual Question Answering (VQA) is an important challenge, as it would lead to faster and more accurate diagnoses and treatment decisions. Most existing methods approach it as a multi-class classification problem, which restricts the outcome to a predefined closed-set of curated answers. We focus on open-ended VQA and motivated by the recent advances in language models consider it as a generative task. Leveraging pre-trained language models, we introduce a novel method particularly suited for small, domain-specific, medical datasets. To properly communicate the medical images to the language model, we develop a network that maps the extracted visual features to a set of learnable tokens. Then, alongside the question, these learnable tokens directly prompt the language model. We explore recent parameter-efficient fine-tuning strategies for language models, which allow for resource- and data-efficient fine-tuning. We evaluate our approach on the prime medical VQA benchmarks, namely, Slake, OVQA and PathVQA. The results demonstrate that our approach outperforms existing methods across various training settings while also being computationally efficient

    Open-Ended Medical Visual Question Answering Through Prefix Tuning of Language Models

    Get PDF
    Medical Visual Question Answering (VQA) is an important challenge, as it would lead to faster and more accurate diagnoses and treatment decisions. Most existing methods approach it as a multi-class classification problem, which restricts the outcome to a predefined closed-set of curated answers. We focus on open-ended VQA and motivated by the recent advances in language models consider it as a generative task. Leveraging pre-trained language models, we introduce a novel method particularly suited for small, domain-specific, medical datasets. To properly communicate the medical images to the language model, we develop a network that maps the extracted visual features to a set of learnable tokens. Then, alongside the question, these learnable tokens directly prompt the language model. We explore recent parameter-efficient fine-tuning strategies for language models, which allow for resource- and data-efficient fine-tuning. We evaluate our approach on the prime medical VQA benchmarks, namely, Slake, OVQA and PathVQA. The results demonstrate that our approach outperforms existing methods across various training settings while also being computationally efficient.</p

    Developing ChatGPT for Biology and Medicine: A Complete Review of Biomedical Question Answering

    Full text link
    ChatGPT explores a strategic blueprint of question answering (QA) in delivering medical diagnosis, treatment recommendations, and other healthcare support. This is achieved through the increasing incorporation of medical domain data via natural language processing (NLP) and multimodal paradigms. By transitioning the distribution of text, images, videos, and other modalities from the general domain to the medical domain, these techniques have expedited the progress of medical domain question answering (MDQA). They bridge the gap between human natural language and sophisticated medical domain knowledge or expert manual annotations, handling large-scale, diverse, unbalanced, or even unlabeled data analysis scenarios in medical contexts. Central to our focus is the utilizing of language models and multimodal paradigms for medical question answering, aiming to guide the research community in selecting appropriate mechanisms for their specific medical research requirements. Specialized tasks such as unimodal-related question answering, reading comprehension, reasoning, diagnosis, relation extraction, probability modeling, and others, as well as multimodal-related tasks like vision question answering, image caption, cross-modal retrieval, report summarization, and generation, are discussed in detail. Each section delves into the intricate specifics of the respective method under consideration. This paper highlights the structures and advancements of medical domain explorations against general domain methods, emphasizing their applications across different tasks and datasets. It also outlines current challenges and opportunities for future medical domain research, paving the way for continued innovation and application in this rapidly evolving field.Comment: 50 pages, 3 figures, 3 table

    Acoustic Prompt Tuning: Empowering Large Language Models with Audition Capabilities

    Full text link
    The auditory system plays a substantial role in shaping the overall human perceptual experience. While prevailing large language models (LLMs) and visual language models (VLMs) have shown their promise in solving a wide variety of vision and language understanding tasks, only a few of them can be generalised to the audio domain without compromising their domain-specific capacity. In this work, we introduce Acoustic Prompt Turning (APT), a new adapter extending LLMs and VLMs to the audio domain by soft prompting only. Specifically, APT applies an instruction-aware audio aligner to generate soft prompts, conditioned on both input text and sounds, as language model inputs. To mitigate the data scarcity in the audio domain, a multi-task learning strategy is proposed by formulating diverse audio tasks in a sequence-to-sequence manner. Moreover, we improve the framework of audio language model by using interleaved audio-text embeddings as the input sequence. This improved framework imposes zero constraints on the input format and thus is capable of tackling more understanding tasks, such as few-shot audio classification and audio reasoning. To further evaluate the reasoning ability of audio networks, we propose natural language audio reasoning (NLAR), a new task that analyses across two audio clips by comparison and summarization. Experiments show that APT-enhanced LLMs (namely APT-LLMs) achieve competitive results compared to the expert models (i.e., the networks trained on the targeted datasets) across various tasks. We finally demonstrate the APT's ability in extending frozen VLMs to the audio domain without finetuning, achieving promising results in the audio-visual question and answering task. Our code and model weights are released at https://github.com/JinhuaLiang/APT

    CAT: enhancing multimodal large language model to answer questions in dynamic audio-visual scenarios

    Get PDF
    This paper focuses on the challenge of answering questions in scenarios that are composed of rich and complex dynamic audiovisual components. Although existing Multimodal Large Language Models (MLLMs) can respond to audio-visual content, these responses are sometimes ambiguous and fail to describe specific audio-visual events. To overcome this limitation, we introduce the CAT, which enhances MLLM in three ways: 1) besides straightforwardly bridging audio and video, we design a clue aggregator that aggregates question-related clues in dynamic audio-visual scenarios to enrich the detailed knowledge required for large language models. 2) CAT is trained on a mixed multimodal dataset, allowing direct application in audio-visual scenarios. Notably, we collect an audio-visual joint instruction dataset named AVinstruct, to further enhance the capacity of CAT to model cross-semantic correlations. 3) we propose AI-assisted ambiguity-aware direct preference optimization, a strategy specialized in retraining the model to favor the non-ambiguity response and improve the ability to localize specific audiovisual objects. Extensive experimental results demonstrate that CAT outperforms existing methods on multimodal tasks, especially in AudioVisual Question Answering (AVQA) tasks. The codes and the collected instructions are released at https://github.com/rikeilong/Bay-CA

    Foundational Models in Medical Imaging: A Comprehensive Survey and Future Vision

    Full text link
    Foundation models, large-scale, pre-trained deep-learning models adapted to a wide range of downstream tasks have gained significant interest lately in various deep-learning problems undergoing a paradigm shift with the rise of these models. Trained on large-scale dataset to bridge the gap between different modalities, foundation models facilitate contextual reasoning, generalization, and prompt capabilities at test time. The predictions of these models can be adjusted for new tasks by augmenting the model input with task-specific hints called prompts without requiring extensive labeled data and retraining. Capitalizing on the advances in computer vision, medical imaging has also marked a growing interest in these models. To assist researchers in navigating this direction, this survey intends to provide a comprehensive overview of foundation models in the domain of medical imaging. Specifically, we initiate our exploration by providing an exposition of the fundamental concepts forming the basis of foundation models. Subsequently, we offer a methodical taxonomy of foundation models within the medical domain, proposing a classification system primarily structured around training strategies, while also incorporating additional facets such as application domains, imaging modalities, specific organs of interest, and the algorithms integral to these models. Furthermore, we emphasize the practical use case of some selected approaches and then discuss the opportunities, applications, and future directions of these large-scale pre-trained models, for analyzing medical images. In the same vein, we address the prevailing challenges and research pathways associated with foundational models in medical imaging. These encompass the areas of interpretability, data management, computational requirements, and the nuanced issue of contextual comprehension.Comment: The paper is currently in the process of being prepared for submission to MI

    Retrieving-to-Answer: Zero-Shot Video Question Answering with Frozen Large Language Models

    Full text link
    Video Question Answering (VideoQA) has been significantly advanced from the scaling of recent Large Language Models (LLMs). The key idea is to convert the visual information into the language feature space so that the capacity of LLMs can be fully exploited. Existing VideoQA methods typically take two paradigms: (1) learning cross-modal alignment, and (2) using an off-the-shelf captioning model to describe the visual data. However, the first design needs costly training on many extra multi-modal data, whilst the second is further limited by limited domain generalization. To address these limitations, a simple yet effective Retrieving-to-Answer (R2A) framework is proposed.Given an input video, R2A first retrieves a set of semantically similar texts from a generic text corpus using a pre-trained multi-modal model (e.g., CLIP). With both the question and the retrieved texts, a LLM (e.g., DeBERTa) can be directly used to yield a desired answer. Without the need for cross-modal fine-tuning, R2A allows for all the key components (e.g., LLM, retrieval model, and text corpus) to plug-and-play. Extensive experiments on several VideoQA benchmarks show that despite with 1.3B parameters and no fine-tuning, our R2A can outperform the 61 times larger Flamingo-80B model even additionally trained on nearly 2.1B multi-modal data
    corecore