3 research outputs found

    Knowledge-Enhanced Hierarchical Information Correlation Learning for Multi-Modal Rumor Detection

    Full text link
    The explosive growth of rumors with text and images on social media platforms has drawn great attention. Existing studies have made significant contributions to cross-modal information interaction and fusion, but they fail to fully explore hierarchical and complex semantic correlation across different modality content, severely limiting their performance on detecting multi-modal rumor. In this work, we propose a novel knowledge-enhanced hierarchical information correlation learning approach (KhiCL) for multi-modal rumor detection by jointly modeling the basic semantic correlation and high-order knowledge-enhanced entity correlation. Specifically, KhiCL exploits cross-modal joint dictionary to transfer the heterogeneous unimodality features into the common feature space and captures the basic cross-modal semantic consistency and inconsistency by a cross-modal fusion layer. Moreover, considering the description of multi-modal content is narrated around entities, KhiCL extracts visual and textual entities from images and text, and designs a knowledge relevance reasoning strategy to find the shortest semantic relevant path between each pair of entities in external knowledge graph, and absorbs all complementary contextual knowledge of other connected entities in this path for learning knowledge-enhanced entity representations. Furthermore, KhiCL utilizes a signed attention mechanism to model the knowledge-enhanced entity consistency and inconsistency of intra-modality and inter-modality entity pairs by measuring their corresponding semantic relevant distance. Extensive experiments have demonstrated the effectiveness of the proposed method

    Open-Domain, Content-based, Multi-modal Fact-checking of Out-of-Context Images via Online Resources

    No full text
    Misinformation is now a major problem due to its potential high risks to our core democratic and societal values and orders. Out-of-context misinformation is one of the easiest and effective ways used by adversaries to spread viral false stories. In this threat, a real image is re-purposed to support other narratives by misrepresenting its context and/or elements. The internet is being used as the go-to way to verify information using different sources and modalities. Our goal is an inspectable method that automates this time-consuming and reasoning-intensive process by fact-checking the image-caption pairing using Web evidence. To integrate evidence and cues from both modalities, we introduce the concept of 'multi-modal cycle-consistency check'; starting from the image/caption, we gather textual/visual evidence, which will be compared against the other paired caption/image, respectively. Moreover, we propose a novel architecture, Consistency-Checking Network (CCN), that mimics the layered human reasoning across the same and different modalities: the caption vs. textual evidence, the image vs. visual evidence, and the image vs. caption. Our work offers the first step and benchmark for open-domain, content-based, multi-modal fact-checking, and significantly outperforms previous baselines that did not leverage external evidence

    Bootstrapping Multi-view Representations for Fake News Detection

    Full text link
    Previous researches on multimedia fake news detection include a series of complex feature extraction and fusion networks to gather useful information from the news. However, how cross-modal consistency relates to the fidelity of news and how features from different modalities affect the decision-making are still open questions. This paper presents a novel scheme of Bootstrapping Multi-view Representations (BMR) for fake news detection. Given a multi-modal news, we extract representations respectively from the views of the text, the image pattern and the image semantics. Improved Multi-gate Mixture-of-Expert networks (iMMoE) are proposed for feature refinement and fusion. Representations from each view are separately used to coarsely predict the fidelity of the whole news, and the multimodal representations are able to predict the cross-modal consistency. With the prediction scores, we reweigh each view of the representations and bootstrap them for fake news detection. Extensive experiments conducted on typical fake news detection datasets prove that the proposed BMR outperforms state-of-the-art schemes.Comment: Authors are from Fudan University, China. Under Revie
    corecore